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Abstract

We give a comparison of the efficiency of three alternative decomposition schemes
for the approximate solution of multi-term fractional differential equations using the
Caputo form of the fractional derivative. The schemes we compare are based on
conversion of the original problem into a system of equations. We review alternative
approaches and consider how the most appropriate numerical scheme may be chosen
to solve a particular equation.
AMS (2000): 65L20, 35Q72, 34K28, 45E10.
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1 Introduction

This paper concerns the numerical solution of multi-term fractional differential equations
which have the general form

DαN y(t) = f(t, y(t), Dα1y(t), . . . , DαN−1y(t)). (1)

Dαy(t) is used to represent the Caputo-type fractional derivative of order α > 0 which is
defined, for m ∈ N and non-integer α > 0, by

Dαu(t) =
1

Γ(m − α)

∫ t

0

(t − τ)m−α−1u(m)(τ)dτ, t > 0, m − 1 < α < m (2)

where
Dmu(t) = u(m)(t). (3)

We assume that αN > αN−1 > . . . > α0 > 0, αi − αi−1 ≤ 1, N ∈ N, and αi ∈ Q for all i.
An initial value problem consists of (1) equipped with initial conditions

y(k)(0) = y
(k)
0 , k = 0, 1, . . . , ⌈αN⌉ − 1. (4)

The notation ⌈α⌉ is used to denote the integer closest to and not less than α i.e. the
integer lying in the interval [α, α + 1).

Our aim is to establish an effective way to approximate solution(s) of the initial value
problem for this equation using a numerical method. To achieve this, we shall reformulate
the multi-term equation in an appropriate way and the focus of this paper is to consider
three alternative strategies for constructing a system of fractional differential equations
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that can be regarded as being equivalent (in a sense that we shall make precise later) to
(1). As we shall see, there are alternative approaches that one might consider, and we
review these and provide a justification for considering only the systems-based approach
here.

Multi-term fractional differential equations have been used to model various types of
visco-elastic damping. Model equations proposed so far are almost always linear, so our
experiments in this paper will focus on equations of the linear form

[

DαN + bN−1D
αN−1 + . . . + b1D

α1 + b0D
0
]

y(t) = g(t), (5)

where bi ∈ R, i = 0, 1, . . . , N − 1, equipped with initial conditions (4). Our aim is to
provide a numerical scheme that is robust, reliable, and reasonably inexpensive in terms
of both set-up costs and the time taken to execute. Other things being equal, we would
also prefer the use of methods that are easily adapted to future non-linear problems.

Two of the algorithms we consider have appeared previously, the third is introduced
in this paper:

1. The earliest algorithm of the type we consider here for the numerical solution of
(5) was introduced by Diethelm and Ford [8, 9]. The method is based on the re-
expression of the multi-term equation as a system of equations of low fractional
order, rather in the same way that one solves a high order ordinary differential
equation as a system of first order equations.

2. In [14] Edwards, Ford and Simpson introduced an alternative approach, in which
the dimension of the system of equations is reduced, but at the expense of a more
complicated formulation. Overall they observed a reduction in computational work
compared with the method of Diethelm and Ford.

3. In this paper we introduce a new algorithm, which again produces a system of
equations of low dimension, and we compare the methods’ computational cost and
effectiveness.

2 Rival approaches

We are aware of two approaches to the solution of multi-term equations that do not give
rise to a system of fractional equations to solve. These methods involve an analytical
stage, in which the original problem is converted into an equivalent form, and a numerical
stage where the solution is approximated. Thus any of these approaches may, at least in
principle, be combined with a variety of numerical methods to give different algorithms
based on the same reformulation.

One approach was proposed by Diethelm and Luchko in the paper [13]. Here the
authors build on an idea proposed by Luchko and Gorenflo in [21]. The approach is to
reformulate the problem (assumed linear) through the use of Laplace transforms to provide
a representation of the solution in terms of a sum of Mittag-Lefler functions. Essentially,
the approach leads to an expression for the solution in terms of a Green’s function. One
needs some method for approximating the solution and the approach proposed in [13] is
to apply the discretised operational calculus analysed in [17, 18] to evaluate the solution.
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In fact, one could use alternative approximations such as one based, for example, on the
BDF method of Diethelm [3].

The second approach was proposed in the PhD thesis of Nkamnang [23]. This time,
the problem is reformulated as a Volterra integral (or integro-differential) equation which
is then solved using a suitable quadrature method that is designed to take care of the
singularities. Again, the discretised operational calculus of Lubich [17, 18] is proposed for
the numerical scheme. Other alternative numerical quadratures are possible.

Both these schemes have been shown to perform well for simple test problems. They
inherit the order properties of the fractional multistep methods on which the discretised
operational calculus approach is based. They also appear to be very versatile, since they
do not impose a requirement (as the systems based approach does) that the orders of
derivatives are all rational numbers.

However, despite this theoretical advantage, it turns out to be desirable nevertheless to
restrict ourselves to problems where all the orders of derivative are rational numbers. In
the case of the schemes of Diethelm and Luchko, and of Nkamnang, it is not necessary to
impose this restriction during the reformulation stage. However, as has been pointed out
elsewhere, the numerical schemes cannot be implemented exactly for irrational indices,
because the computer cannot store or calculate with irrational numbers. Therefore, while
there may be some attraction in the slightly more general form of reformulation available,
there is no practical benefit.

Further, as has been remarked by Diethelm and Ford in [12], these alternative formu-
lations are actually mathematically equivalent to the use of Method 1 (described below),
combined with the use of a fractional multistep method. This observation is not so sur-
prising, since in the case of ordinary differential equations, the conversion to an integral
equation form and solution by a reducible quadrature method is mathematically equiva-
lent to the application of a multistep method directly to the differential equation.

Finally, we observe that there is also a potential difficulty in the use of the discretised
operational calculus: the calculation of the starting weights. This problem has been
considered in detail in the recent paper [5] and the conclusions of that paper were that
the weights cannot be calculated reliably and the resulting method may become unstable
and inaccurate if the fractional orders do not produce a reasonably small integer when
divided into unity. We also note that the numerical examples given in the paper [13] and
the thesis [23] all have convenient derivative orders which are (small) integer divisors of
unity. For these problems, the starting weights can be calculated reasonably reliably and
accurately. Furthermore, fractional multistep methods did not turn out to be the most
efficient solvers for single term problems in our experiments in [15].

As we already remarked in the introduction, we shall assume throughout this paper
that all derivative orders appearing are rational numbers.

3 Choice of numerical algorithm

Systems of fractional differential equations may be solved approximately by applying a
numerical method for a scalar problem of the appropriate order to each component of the
system. Therefore our starting point in the selection of numerical methods is the paper [11]
in which a full range of approaches is presented. We do not reproduce the details here for

4



the sake of space, since [11] provides a full description of each algorithm. For single term
equations, the efficiency of these algorithms was compared in our paper [15] and the results
of that paper help us to focus on appropriate numerical methods in this work. However,
as we have noted previously, the main focus here is on the different decompositions from
multi-term problem into a system that are available and, in principle, one could implement
each of these decompositions with a full range of numerical algorithms.

The results of our previous paper can be summarised as follows:

1. an iterative scheme, based on an Adams-type predictor corrector (PECE) pair, was
frequently the most efficient method to adopt

2. the BDF method described by Diethelm in [3] was the only other method that
seemed to provide a competitive alternative to the PECE scheme

3. even when the predictor-corrector scheme was not the most efficient, it was always
a close competitor with the best scheme tested. Therefore we proposed this scheme
as a good universal choice in general

4 The representations as systems

4.1 Method 1

Diethelm and Ford [9] introduced the following scheme for the solution of multi-term
FDEs of the form (5).

Let αN = vq, where q ∈ Q is the largest rational number for which each order αn

appearing in (5) is an integer multiple of q. A suitable value for q exists since we assumed
all the orders were rational.

We can now write the multi-term equation (5) in the form

[

Dvq + av−1D
(v−1)q + . . . + a1D

q + a0D
0
]

y(t) = g(t), (6)

with initial conditions

y(k)(0) = y
(k)
0 , k = 0, 1, . . . , ⌈vq⌉ − 1. (7)

Notice that this equation has, in general, additional terms included (each with co-efficient
zero) compared with (5).

Remark 4.1 We have assumed all the orders are rational. In the case where any order αk

is irrational this approach cannot be applied exactly. However, it may be appropriate (see
[7]) to approximate the irrational order by a nearby rational value so that an approximate
solution may be obtained.

Diethelm and Ford [9] proved that equation (6) can be written as a system of equations,
with appropriate initial conditions:
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Theorem 4.1 The equation (6) with initial conditions (7) (or, equivalently, (5) equipped
with (4)) is equivalent to the system of equations

Dq 0Y (t) = 1Y (t),
Dq 1Y (t) = 2Y (t),
Dq 2Y (t) = 3Y (t),
...
Dq v−2Y (t) = v−1Y (t),
Dq v−1Y (t) = −b0

0Y (t) − b1
α1/qY (t) − . . . − bN−1

αN−1/qY (t) + g(t)

(8)

together with the initial conditions,

iY (0) =

{

y
(k)
0 if iv = k ∈ N,

0 else,
(9)

in the following sense.

1. Whenever Y := ( 0Y, . . . , v−1Y )T with 0Y ∈ C⌈αN ⌉[0, c] for some c > 0 is the
solution of the system (8), equipped with the corresponding initial conditions, the
function y := 0Y solves the multi-term equation (5) and satisfies the initial condi-
tions (4).

2. Whenever y ∈ C⌈αN ⌉[0, c] is a solution of the multi-term equation (5) satisfying the
initial conditions (4), the vector-valued function

Y := ( 0Y, . . . , vY )T := (y, Dqy, D2qy, . . . , D(v−1)qy)T

satisfies the system (8) and the initial conditions (9).

For this result (and the subsequent ones in this section) the following Lemma is im-
portant:

Lemma 4.1 Let f ∈ Ck[a, b] for some a < b and some k ∈ N. Moreover, let 0 < ν < 1
and assume that j ∈ Q is such that there is no integer number strictly between jν and
(j + 1)ν. Then if (j + 1)ν < k we have

DνDjνf = D(j+1)νf. (10)

It follows that we can rewrite equation (5) as a system of v single-term equations,

DqY (t) = G(t, Y (t)) (11)

with initial conditions
Y (0) = Y0

where Y0 = ( 0Y (0), 1Y (0), . . . , v−1Y (0))T .
In principle, one can now apply any single-term equation solver from [11] to solve the

system (11). In practice, we shall confine ourselves to the two methods we already showed
to be efficient in [15]. These are the backward differentiation scheme described in [3] and
the predictor-corrector scheme from [10]
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4.2 Method 2

The method introduced by Edwards, Ford and Simpson aimed to produce a variant that
leads to a system of equations of lower dimension. This is achieved by allowing the orders
of different equations within the system to vary.

We write each order αi, as the sum of [αi] (its whole number part) and βi = αi − [αi]
(its fractional part.)

For example, we consider a 5-term test equation with αN = 2:

[D2 + b3D
β3+1 + b2D + b1D

α1 + b0]y(t) = g(t), where α1, β1 ∈ (0, 1), bi ∈ R (12)

subject to initial conditions,

y(k)(0) = y
(k)
0 , k = 0, 1

would be written as,

0Y (t) = y(t)
1Y (t) = Dα1 0Y (t)
2Y (t) = D 0Y (t)
3Y (t) = Dβ3 2Y (t)
4Y (t) = D 2Y (t)

(13)

together with initial conditions

kY (0) =

{

y
(k)
0 for k = 0 and k = 2,

0 otherwise.
(14)

In matrix form, the system can be represented







Dα1 0 0 0
D 0 0 0
0 0 Dβ3 0
0 0 D 0













0Y (t)
1Y (t)
2Y (t)
3Y (t)






=









1Y (t)
2Y (t)
3Y (t)

g(t) −
∑3

i=0 bi
iY (t).









(15)

Of course, now we have a system which involves integer order derivatives as well as
derivatives of possibly several different fractional orders. In addition, the matrix form
highlights one of the potential limitations of the approach: one must take particular care
to ensure that the discretised version does not have a singular matrix approximating the
derivatives. We chose to solve the differential equation using a trapezium rule for the
integer-order derivatives and the backward differentiation method of Diethelm (in [3]) for
solving the fractional order components. This avoids the possibility of a singularity in
the algebraic scheme to be solved and also has the particular advantage that the weights
needed are given explicitly in [3] and so there is no additional work involved in setting up
the solver for the multiple fractional order derivatives we need.

Remark 4.2 If one attempted to employ the predictor-corrector formula to (15) then the
algebraic problem would become singular.
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This approach leads to the need to solve a linear system of the form,









−α1w0,j
α1ηj 0 0

1 0 −h
2

0
0 0 −β1w0,j

β1ηj
hb0
2

hb1
2

1 + hb2
2

hb3
2















1Yj
2Yj
3Yj
4Yj






=







1Sj
2Sj
3Sj
4Sj







where

1Sj =

j
∑

k=1

α1wk,j
1Yj−k + 1Y0/α1,

2Sj = 1Yj−1 +
h

2
3Yj−1,

3Sj =

j
∑

k=1

β1wk,j
3Yj−k +3 Y0/β1,

4Sj = 3Yj−1 + Gj −
h

2

4
∑

i=1

bi−1
iYj−1,

Gj = h(gj + gj−1)/2, gj = g(jh),

and α1ηj = (jh)α1Γ(−α1).
and the values iY0 are given by the initial conditions.

4.3 Method 3

Methods 1 and 2 produce different systems of equations. In the case of method 1, the
system may be of quite high dimension. Method 2 keeps the dimension of the system rea-
sonably small and independent of the precise orders in the equation. However, this comes
at the cost of producing a left-hand side matrix that can be inconvenient in calculations
and can restrict the choice of numerical method. However, because the Edwards, Ford
and Simpson method uses an explicit BDF-based quadrature, the potential problem was
avoided. Our decomposition in Method 3 is designed to avoid this difficulty and permit
a wider range of numerical algorithms to be employed.

Method 3 decomposes the multi-term equation into a system of fractional equations
of varying orders. This time we do not calculate the integer order derivatives directly, as
we did in Method 2, but instead we calculate each derivative in the equation by reference
to the next lower order derivative.

We form an ascending list {γj} of all derivative orders that appear in the equation
(including any missing natural number orders in the list) and for each i > 1, we find the
offset βi of γi above γi−1. Thus β1 = γ1 and βi = γi − γi−1 for i > 1.

We now rewrite the (possibly non-linear) multi-term equation using the sequence of
orders {βi}. Once again, the approach is most easily understood through an example:
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4.4 Example: a five-term Equation

For the equation,

D2y = f(t, y(t), Dα1y(t), Dy(t), Dα3y(t)), where α1,∈ (0, 1), α3 ∈ (1, 2) (16)

subject to initial conditions,

y(k)(0) = y
(k)
0 , k = 0, 1

it is easy to see that {βi} = {α1, 1 − α1, α3 − 1, 2 − α3}.
We can establish the following equivalence theorem by repeated application of Lemma

4.1.

Theorem 4.2 The equation (16), with the relevant initial conditions, is equivalent to the
system of equations

0Y (t) = y(t)
1Y (t) = Dα1y(t) = Dβ1 0Y (t)
2Y (t) = Dy(t) = Dβ2 1Y (t)
3Y (t) = Dα3y(t) = Dβ3 2Y (t)
4Y (t) = D2y(t) = Dβ4 3Y (t)

(17)

together with initial conditions

kY (0) =

{

y
(k)
0 for k = 0 and k = 2,

0 else.
(18)

Expressed in matrix form, this leads to









Dβ1 0 0 0
0 Dβ2 0 0
0 0 Dβ3 0
0 0 0 Dβ4















0Y (t)
1Y (t)
2Y (t)
3Y (t)






=







1Y (t)
2Y (t)
3Y (t)

f(t, 0Y (t), 1Y (t), 2Y (t), 3Y (t))






.

With the decomposition proposed in method 3, it is possible to apply the full range
of numerical methods discussed in [11]. (Indeed, one could apply this decomposition to
simple non-linear problems too) However, one must bear in mind the comparatively high
set-up costs for the method because of the multiple fractional orders one might need.
Once again, the backward differentiation approach and the predictor-corrector algorithm
turn out to be attractive choices that combine efficiency with fairly low start-up costs.

5 Counting the cost

The three approaches to reformulating the underlying multi-term equation considered in
Section 4 each lead to one or more numerical algorithm for solving the multi-term equation.
Here we discuss the components in the overall computational cost of the algorithms.
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5.1 Component 1: the dimension of the system

The first, and probably the most significant, factor in the computational cost of these
methods is the dimension of the resulting matrix system of equations. The variation in
these dimensions depends both on the dimension of the original multi-term equation, and
on the specific orders included in the original problem.

First we consider two specific examples before we give the general conclusion.

Example 5.1 Let the orders of fractional derivative in the multi-term equation be, re-
spectively 0.5, 1, 1.5, 2, 2.5. Using method 1, the highest common factor of these orders is
0.5 and the dimension of the resulting system is 5 = 2.5

0.5
. Using method 2, the orders used

will be 0.5, 1, 0.5, 2, 0.5 so the dimension will again be 5. Using method 3, the orders used
will be 0.5, 0.5, 0.5, 0.5, 0.5 and the dimension will be 5. For this example, the dimension
of the system is independent of the method chosen.

Remark 5.1 For example 5.1, methods 1 and 3 actually yield exactly the same decom-
position of the original equation. Of course, this is not a general pattern as we shall see
in our next example.

Example 5.2 Let the orders of fractional derivative in the multi-term equation be, re-
spectively 0.49, 1, 1.5, 2, 2.5. Using method 1, the highest common factor of these orders
is 0.01 and the dimension of the resulting system is 2500 = 2.5

0.01
. Using method 2, the or-

ders used will be 0.49, 1, 0.5, 2, 0.5 so the dimension will be 5. Using method 3, the orders
used will be 0.49, 0.51, 0.5, 0.5, 0.5 and the dimension will be 5. Thus we can see that the
dimension of the system using method 1 is highly unfavourable compared with the other
two methods.

Remark 5.2 One can observe an unexpected phenomenon here: under method 1, the
dimension of the system would increase if the order given here as 0.49 was allowed to
vary and become closer to 0.5. It is known (see for example the discussion in [7]) that the
exact solution to a multi-term equation is stable with respect to small perturbations in the
order(s). This feature will be reflected in algorithms developed using methods 2 and 3, but
will be hidden in algorithms based on method 1.

In the general case, let the orders present in a certain multi-term equation be {α1, α2, . . . , αN}
then the dimension of the system generated by method 1 will be αN

q
where q is the largest

rational number for which {1, α1, α2, . . . , αN} are all integer multiples of q. The dimen-
sions of the systems generated by methods 2 and 3 will be bounded by N + [αN ]. The
precise dimension in this case will depend on how many of the natural number orders
1, 2, . . . , αN − 1 are already present in the list {α1, α2, . . . , αN} since the list must be
augmented as necessary to include all the intervening integer orders.

5.2 Component 2: the cost of setting up the fractional solvers

The computational cost of setting up the fractional solvers will depend on the number of
different fractional derivatives that appear in the system of equations, and on the choice
of numerical method. For the methods under consideration here, for each fractional order,
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the cost of calculating the parameters of the numerical method will be quite low. In the
case of the backward differentiation formula, the weights are tabulated in [3]. For the
predictor-corrector scheme, the parameters are given in [9]. The total cost of setting up
will be a small multiple of the number of fractional orders.

Remark 5.3 The cost of setting up the solvers can become significant if a higher order
scheme is preferred. We considered in [15] the competitiveness of fractional multistep
methods (see [16]) and found them to be usually (surprisingly) uncompetitive in practice.
Further discussion of the practical implications of implementing the methods is contained
in [5]. The main issue here is the need to calculate special starting weights for the method
in order to preserve the order of convergence. The calculation of these weights is a poorly-
conditioned problem and inaccuracies in the weights can lead to loss of accuracy in the
method. The calculation of starting weights for a system of equations involving several
different fractional order derivatives seems likely to be a major obstacle to the use of
fractional multistep methods here.

5.3 Component 3: executing the algorithm

The main factor (apart from the dimension of the system) that will affect the time taken
to execute the algorithms we are discussing is the number of corrector steps when we are
using PECE predictor-corrector algorithm. Multiple corrector iterations will increase the
execution time (and number of calculation steps) proportionately. In the next section we
recall how to choose the number of corrector iterations to achieve an appropriate order
for the numerical scheme.

6 The orders of the methods and the number of cor-

rector iterations

The conventional error analysis of numerical schemes for the solution of differential equa-
tions depends on the use of a series expansion for the exact solution of the problem. Thus,
one assumes that the solution satisfies certain smoothness properties and then establishes
a bound on the error. Typically, one can prove that the solution will satisfy the smooth-
ness assumptions if the underlying differential equation satisfies natural conditions.

The analysis of errors for fractional differential equations presents additional chal-
lenges because the fractional order derivative of a smooth function is typically not itself
smooth. Therefore it is natural to present an error analysis for a method either based on
assumptions about the smoothness of the underlying equation or of its solution. Typically
we shall see a loss of order of the method if the solution (and its fractional derivatives)
cannot be shown to be smooth.

The two numerical schemes that we are most concerned with here are the backward
differentiation scheme from [3] which is known (under appropriate smoothness assump-
tions) to have an error of O(h2−α) when used to solve a single-term equation of fractional
order 0 < α < 1. The predictor-corrector (PECE) scheme from [10] is known to have an
error of O(h1+α) which rises to O(hδ) where δ = min(2, 1+ qα) when the corrector step is
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applied q−times (see [4]). These orders are attained, for example, under the assumption
that the α−order derivative of the solution is twice continuously differentiable.

These remarks on order and smoothness will help us to understand the numerical
results that follow.

7 Choice of numerical examples

For our numerical experiments we have chosen to investigate the behaviour of the methods
for linear equations where the exact solution is known explicitly and is smooth. As we
noted in the previous section, results on the order of convergence of the method are
dependent on the smoothness not only of the solution but of its fractional derivative. By
choosing equations whose exact solution is u(t) = t3, the condition Dαu ∈ C2 is satisfied
for every α ∈ (0, 1). For those equations whose exact solution is u(t) = t2, the condition
Dαu ∈ C1 is satisfied for every α ∈ (0, 1) but Dαu ∈ C2 is not satisfied so the order of
convergence may be compromised.

We let the exact analytical solution, for a fixed interval T be y(T ) and the approxi-
mation at T using n step lengths be yn(T ). EOC, represents the experimental estimated
order of convergence evaluated using the formula

EOC = log2

(

| y(T ) − yn(T ) |

| y(T )− y2n(T ) |

)

.

In all the examples that follow we consider approximations over the interval [0, 1], and
give the errors at t = 1.

The captions in the tables have the following meanings:

• Method 1a refers to the use of the decomposition described as Method 1 with the
PECE (Adams-type) numerical method from [10].

• Method 1a(m) is the same approach as in 1a but this time using the P (EC)mE
scheme with the corrector step applied m−times

• Method 1b uses the decomposition from Method 1 but with the simpler numerical
scheme from [3]

• Method 2 is implemented using the backward differentiation scheme as described in
[14]

• Method 3 uses the decomposition described in this paper with the PECE (Adams-
type) numerical method from [10]

• Method 3(m) is the same approach as in 3 but this time using the P (EC)mE scheme
with the corrector step applied m−times.
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8 Numerical results

In the tables that follow we give the errors in the approximate solutions of each of three
equations. We also tabulate the number of floating point operations and the average time
to execute the algorithm (based on an average time over 10 ’runs’). The aim is to give a
fair basis for comparison of the actual errors against the actual cost of the computation.
Of course, with modern computer software, there is a complex interplay between the
number of calculations undertaken and the time taken to perform them, and therefore
one can reach subtly different conclusions depending on which basis is used to measure
the computational cost.

8.1 Example 1

For the first example we investigate the equation

D2y + D1/2y + y = t3 + 6t +
3.2t2.5

Γ(0.5)
(19)

which, under the appropriate initial conditions, has the exact solution

y(t) = t3. (20)

In each case, this results in a system containing only the single fractional order 1
2
. We

would expect that Methods 1a, 1b, 2 and 3 would all have order 1.5 and that methods
1a(2) and 3(2) would have order 2. These expectations are confirmed by the results in
Table 1.

8.2 Example 2

The second example shows how the loss of smoothness in the fractional derivative of the
solution can lead to a reduction in order of the methods. We consider

D2y + D1/2y + y = t2 + 2 +
2.6666666667t1.5

Γ(0.5)
. (21)

The equation is superficially very similar to Example 1 but this time (subject to
suitable initial conditions) the solution is y(t) = t2 and has the property that D1/2y is not
twice continuously differentiable. The orders of convergence observed for Methods 1a(2)
and 3(2) confirm that the order 2 is no longer attained.

8.3 Example 3

In the third example, we explore the effect of dimension increase when the original de-
composition as a system of a single order is used. For the equation

D2y + D3/4y + y = t3 + 6t +
8.533333333t2.25

Γ(0.25)
(22)
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Method 1a Method 1b
h error y(1) KFlops Time EOC error y(1) KFlops Time EOC

1/32 1.86e-02 14.8 0.00 1.60e-02 16.0 0.00
1/64 6.62e-03 46.0 0.06 1.49 5.85e-03 41.2 0.00 1.45
1/128 2.35e-03 157.4 0.11 1.49 2.12e-03 119.2 0.05 1.47
1/256 8.36e-04 576.8 0.22 1.49 7.59e-04 385.7 0.17 1.48
1/512 2.96e-04 2202.2 0.50 1.50 2.71e-04 1361.2 0.32 1.49

Method 2 Method 3
1/32 1.27e-03 9.9 0.06 1.86e-02 27.0 0.05
1/64 4.32e-04 22.8 0.05 1.56 6.62e-03 70.1 0.11 1.49
1/128 1.49e-04 57.7 0.11 1.54 2.35e-03 205.4 0.17 1.49
1/256 5.14e-05 164.6 0.22 1.54 8.36e-04 672.6 0.49 1.49
1/512 1.79e-05 525.6 0.55 1.52 2.96e-04 2393.4 1.21 1.50

Method 1a(2) Method 3(2)
1/32 4.61e-04 22.1 0.00 4.61e-04 39.0 0.11
1/64 8.96e-05 68.7 0.06 2.36 8.96e-05 102.4 0.16 2.36
1/128 1.80e-05 235.6 0.16 2.32 1.80e-05 302.8 0.33 2.32
1/256 3.76e-06 864.3 0.28 2.26 3.76e-06 998.4 0.82 2.26
1/512 8.14e-07 3301.4 0.77 2.21 8.14e-07 3569.4 1.87 2.21

Table 1 D2y + D1/2y + y = t3 + 6t + 3.2t2.5

Γ(0.5)
. Exact solution y(t) = t3

which, with appropriate initial conditions, has solution y(t) = t3. The dimension of the
system to be solved using methods 1a and 1b is 8, while methods 2 and 3 use a system of
dimension 3. The orders of convergence are expected to be 1.25 for methods 1a, 2 and 3,
1.75 for method 1b and 2.0 for methods 1a(4) and 3(4). These are reflected in Table 3.

However, the results in Table 3 are very interesting because they show the importance
of considering execution time as well as the number of operations in calculating the cost of
applying an algorithm. Method 1a(4) uses considerably more computations than method
3(4). However, the execution speed is faster for method 1a(4) because the system being
solved is all of the same order and therefore the software can take advantage of this and use
various short-cuts. This means that method 1a(n) may be preferred above method 3(n)
even when the dimension of the system to be solved using method 1a is somewhat larger
than the dimension of the system using method 3. However, our detailed experimentation
has shown that any advantage of method 1a over method 3 vanishes before the dimension
of the method 1a decomposition reaches three times the dimension of the method 3
decomposition. Notice also that method 2 is by far the fastest method for producing
a reasonably accurate solution, but its lower order of accuracy makes it uncompetitive for
problems where higher degrees of accuracy are demanded.

9 Concluding remarks

All the methods we have considered in this paper can be used effectively for the solution
of multi-term equations and the choice of a suitable method for any particular applica-
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Method 1a Method 1b
h error y(1) KFlops Time EOC error y(1) KFlops Time EOC

1/32 4.84e-03 14.8 0.00 1.30e-02 16.0 0.00
1/64 1.66e-03 45.8 0.06 1.54 7.40e-03 41.1 0.00 0.81
1/128 5.74e-04 157.1 0.11 1.53 4.02e-03 118.9 0.06 0.88
1/256 2.00e-04 576.3 0.22 1.52 2.12e-03 385.2 0.16 0.92
1/512 7.00e-05 2201.2 0.50 1.51 1.10e-03 1360.2 0.38 0.95

Method 2 Method 3
1/32 9.08e-04 9.8 0.06 4.84e-03 26.9 0.05
1/64 3.32e-04 22.6 0.05 1.45 1.66e-03 69.9 0.11 1.54
1/128 1.20e-04 57.5 0.11 1.47 5.74e-04 205.1 0.21 1.53
1/256 4.30e-05 164.0 0.22 1.48 2.00e-04 672.0 0.55 1.52
1/512 1.54e-05 524.6 0.60 1.48 7.00e-05 2392.4 1.27 1.51

Method 1a(2) Method 3(2)
1/32 6.06e-04 22.0 0.06 6.06e-04 39.0 0.05
1/64 2.73e-04 68.5 0.06 1.15 2.73e-04 102.2 0.16 1.15
1/128 1.13e-04 235.3 0.17 1.27 1.13e-04 302.5 0.33 1.27
1/256 4.46e-05 863.8 0.33 1.34 4.46e-05 997.9 0.77 1.34
1/512 1.70e-05 3300.4 0.77 1.39 1.70e-05 3568.4 1.97 1.39

Table 2: D2y + D1/2y + y = t2 + 2 + 2.6666666667t1.5

Γ(0.5)
Exact solution y(t) = t2

tion must take account of the precise fractional orders encountered in the problem and
the necessary level of accuracy required in the solution. For highly accurate solutions,
one should consider the decompositions given by method 1 and method 3 (according to
the dimension of the resulting system of equations). If the dimensions are reasonably
similar then method 1 combined with the predictor-corrector algorithm is likely to be
most efficient. If the dimension of the method 1 decomposition is much larger than the
dimension of the method 3 decomposition, then we would prefer the method 3 decompo-
sition combined with the predictor-corrector algorithm. Note that the optimal number of
corrector iterations can be determined formulaically using the approach introduced in [4]
and outlined in Section 6.
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