783 research outputs found

    Linear approaches to intramolecular Förster Resonance Energy Transfer probe measurements for quantitative modeling

    Get PDF
    Numerous unimolecular, genetically-encoded Forster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted R<sub>alt</sub>) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on R<sub>alt</sub> are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purpose

    “cAMP Sponge”: A Buffer for Cyclic Adenosine 3′, 5′-Monophosphate

    Get PDF
    Background: While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP). Methods/Principal Findings: Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIβRI\beta of protein kinase A (PKA). Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named “cAMP sponge”) was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets. Conclusions: This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events

    Adenosine A2A receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice

    Get PDF
    © 2009 Nature Publishing Group All rights reservedPrevious in vitro studies have characterized the electrophysiological and molecular signaling pathways of adenosine tonic modulation on long-lasting synaptic plasticity events, particularly for hippocampal long-term potentiation(LTP). However, it remains to be elucidated whether the long-term changes produced by endogenous adenosine in the efficiency of synapses are related to those required for learning and memory formation. Our goal was to understand how endogenous activation of adenosine excitatory A2A receptors modulates the associative learning evolution in conscious behaving mice. We have studied here the effects of the application of a highly selective A2A receptor antagonist, SCH58261, upon a well-known associative learning paradigm - classical eyeblink conditioning. We used a trace paradigm, with a tone as the conditioned stimulus (CS) and an electric shock presented to the supraorbital nerve as the unconditioned stimulus(US). A single electrical pulse was presented to the Schaffer collateral–commissural pathway to evoke field EPSPs (fEPSPs) in the pyramidal CA1 area during the CS–US interval. In vehicle-injected animals, there was a progressive increase in the percentage of conditioning responses (CRs) and in the slope of fEPSPs through conditioning sessions, an effect that was completely prevented (and lost) in SCH58261 (0.5 mg/kg, i.p.)-injected animals. Moreover, experimentally evoked LTP was impaired in SCH58261- injected mice. In conclusion, the endogenous activation of adenosine A2A receptors plays a pivotal effect on the associative learning process and its relevant hippocampal circuits, including activity-dependent changes at the CA3-CA1 synapse.This study was supported by grants from the Spanish Ministry of Education and Research (BFU2005-01024 and BFU2005-02512), Spanish Junta de Andalucía (BIO-122 and CVI-02487), and the Fundación Conocimiento y Cultura of the Pablo de Olavide University (Seville, Spain).B. Fontinha was in receipt of a studentship from a project grant (POCI/SAU-NEU/56332/2004) supported by Fundação para a Ciência e Tecnologia (FCT, Portugal), and of an STSM from Cost B30 concerted action of the EU

    Contribution of microscopy for understanding the mechanism of action against trypanosomatids

    Get PDF
    Transmission electron microscopy (TEM) has proved to be a useful tool to study the ultrastructural alterations and the target organelles of new antitrypanosomatid drugs. Thus, it has been observed that sesquiterpene lactones induce diverse ultrastructural alterations in both T. cruzi and Leishmania spp., such as cytoplasmic vacuolization, appearance of multilamellar structures, condensation of nuclear DNA, and, in some cases, an important accumulation of lipid vacuoles. This accumulation could be related to apoptotic events. Some of the sesquiterpene lactones (e.g., psilostachyin) have also been demonstrated to cause an intense mitochondrial swelling accompanied by a visible kinetoplast deformation as well as the appearance of multivesicular bodies. This mitochondrial swelling could be related to the generation of oxidative stress and associated to alterations in the ergosterol metabolism. The appearance of multilamellar structures and multiple kinetoplasts and flagella induced by the sesquiterpene lactone psilostachyin C indicates that this compound would act at the parasite cell cycle level, in an intermediate stage between kinetoplast segregation and nuclear division. In turn, the diterpene lactone icetexane has proved to induce the external membrane budding on T. cruzi together with an apparent disorganization of the pericellar cytoskeleton. Thus, ultrastructural TEM studies allow elucidating the possible mechanisms and the subsequent identification of molecular targets for the action of natural compounds on trypanosomatids.Fil: Lozano, Esteban Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Spina Zapata, Renata María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Barrera, Patricia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Tonn, Carlos Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Sosa Escudero, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Ciencias Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; Argentin

    A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation

    Get PDF
    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium _Escherichia coli_, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the _in vivo_ MinDE localization dynamics by accounting for the established properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally

    Older Adults and Information and Communication Technologies in the Global North

    Get PDF
    At all ages, people are incorporating information and communication technologies (ICTs) into their lives. It is not that they have stopped talking with each other in-person, it is that ICTs complement their interactions when they cannot be together face-to-face. Since the 1990s, email has provided a routine way to stay in touch and sustain meaningful contact over distance. But not all age groups have adopted ICTs with the same enthusiasm. Research in the Global North has consistently reported that age plays an important role in ICT adoption and use (Anderson and Perrin 2017). For example, older adults have been the least likely to use ICTs, and even when they do use ICTs, they are less active in their use (Blank and Groselji 2014; Haight, Quan-Haase, and Corbett 2014; Schreurs, Quan-Haase, and Martin 2017). Yet, this is changing. As more older adults use ICTs, analysts are wondering how such ICTs affect older adults’ social networks (Wang, Zhang and Wellman 2018; Wellman, Quan-Haase and Harper forthcoming): Are ICTs helping older adults build, maintain, or diminish personal networks? And how are they supporting or limiting the exchange of social support both for local and long-distance social networks? Moreover, are ICTs affecting different types of social ties differently—be they kin, friend, neighbor, workmate, or churchgoer; or strong or weak

    Long Distance Dispersal and Connectivity in Amphi-Atlantic Corals at Regional and Basin Scales

    Get PDF
    Among Atlantic scleractinian corals, species diversity is highest in the Caribbean, but low diversity and high endemism are observed in various peripheral populations in central and eastern Atlantic islands and along the coasts of Brazil and West Africa. The degree of connectivity between these distantly separated populations is of interest because it provides insight into processes at both evolutionary and ecological time scales, such as speciation, recruitment dynamics and the persistence of coral populations. To assess connectivity in broadly distributed coral species of the Atlantic, DNA sequence data from two nuclear markers were obtained for six coral species spanning their distributional ranges. At basin-wide scales, significant differentiation was generally observed among populations in the Caribbean, Brazil and West Africa. Concordance of patterns in connectivity among co-distributed taxa indicates that extrinsic barriers, such as the Amazon freshwater plume or long stretches of open ocean, restrict dispersal of coral larvae from region to region. Within regions, dispersal ability appears to be influenced by aspects of reproduction and life history. Two broadcasting species, Siderastrea siderea and Montastraea cavernosa, were able to maintain gene flow among populations separated by as much as 1,200 km along the coast of Brazil. In contrast, brooding species, such as Favia gravida and Siderastrea radians, had more restricted gene flow along the Brazilian coast

    G-Protein Coupled Receptor Signaling Architecture of Mammalian Immune Cells

    Get PDF
    A series of recent studies on large-scale networks of signaling and metabolic systems revealed that a certain network structure often called “bow-tie network” are observed. In signaling systems, bow-tie network takes a form with diverse and redundant inputs and outputs connected via a small numbers of core molecules. While arguments have been made that such network architecture enhances robustness and evolvability of biological systems, its functional role at a cellular level remains obscure. A hypothesis was proposed that such a network function as a stimuli-reaction classifier where dynamics of core molecules dictate downstream transcriptional activities, hence physiological responses against stimuli. In this study, we examined whether such hypothesis can be verified using experimental data from Alliance for Cellular Signaling (AfCS) that comprehensively measured GPCR related ligands response for B-cell and macrophage. In a GPCR signaling system, cAMP and Ca2+ act as core molecules. Stimuli-response for 32 ligands to B-Cells and 23 ligands to macrophages has been measured. We found that ligands with correlated changes of cAMP and Ca2+ tend to cluster closely together within the hyperspaces of both cell types and they induced genes involved in the same cellular processes. It was found that ligands inducing cAMP synthesis activate genes involved in cell growth and proliferation; cAMP and Ca2+ molecules that increased together form a feedback loop and induce immune cells to migrate and adhere together. In contrast, ligands without a core molecules response are scattered throughout the hyperspace and do not share clusters. G-protein coupling receptors together with immune response specific receptors were found in cAMP and Ca2+ activated clusters. Analyses have been done on the original software applicable for discovering ‘bow-tie’ network architectures within the complex network of intracellular signaling where ab initio clustering has been implemented as well. Groups of potential transcription factors for each specific group of genes were found to be partly conserved across B-Cell and macrophage. A series of findings support the hypothesis
    corecore