171 research outputs found

    Towards a greener endoscopy: considerations on the strategies to improve sustainability

    Get PDF
    Climate crisis is dramatically changing life on earth. Environmental sustainability and waste management are rapidly gaining centrality in quality improvement strategies of healthcare, especially in procedure- dominant fields such as gastroenterology and digestive endoscopy. Therefore, healthcare interventions and endoscopic procedures must be evaluated through the ‘triple bottom line’ of financial, social, and environmental impact. The purpose of the paper is to provide information on the carbon footprint of gas- troenterology and digestive endoscopy and outline a set of measures that the sector can take to reduce the emission of greenhouse gases while improving patient outcomes. Scientific societies, hospital execu- tives, single endoscopic units can structure health policies and investment to build a “green endoscopy”. The AIGO study group reinforces the role of gastrointestinal endoscopy professionals as advocates of sus- tainability in digestive endoscopy. The “green endoscopy” can shape a more sustainable health service and lead to an equitable, climate-smart, and healthier future.info:eu-repo/semantics/publishedVersio

    Aging disrupts MANF-mediated immune modulation during skeletal muscle regeneration

    Get PDF
    Copyright © 2023, The Author(s), under exclusive licence to Springer Nature America, Inc. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Age-related decline in skeletal muscle regenerative capacity is multifactorial, yet the contribution of immune dysfunction to regenerative failure is unknown. Macrophages are essential for effective debris clearance and muscle stem cell activity during muscle regeneration, but the regulatory mechanisms governing macrophage function during muscle repair are largely unexplored. Here, we uncover a new mechanism of immune modulation operating during skeletal muscle regeneration that is disrupted in aged animals and relies on the regulation of macrophage function. The immune modulator mesencephalic astrocyte-derived neurotrophic factor (MANF) is induced following muscle injury in young mice but not in aged animals, and its expression is essential for regenerative success. Regenerative impairments in aged muscle are associated with defects in the repair-associated myeloid response similar to those found in MANF-deficient models and could be improved through MANF delivery. We propose that restoring MANF levels is a viable strategy to improve myeloid response and regenerative capacity in aged muscle.This work was supported by EMBO (IG4448 to P.S.V.) and FCT (PTDC/MED-OUT/8010/2020 and EXPL/MED-OUT/1601/2021 to P.S.V. and J.N.). P.S.V. was supported by ‘la caixa’ Foundation Junior Leader Fellowship (LCF/BQ/PI19/11690006). J.N. was supported by an assistant research contract from FCT (2021.03843.CEECIND). P.L. was supported by the Academy of Finland (grant 343299) and by the Jane and Aatos Erkko Foundation.info:eu-repo/semantics/publishedVersio

    Biochemical characterization of highly stable endolysins with a powerful and broad anti-Gram-negative lytic activity in the presence of weak acids

    Get PDF
    EMBO Conference on Viruses of Microbes III: Structure and Function - from Molecules to Communities (Programme and Abstract Book)info:eu-repo/semantics/publishedVersio

    CD90 is not constitutively expressed in functional innate lymphoid cells

    Get PDF
    Huge progress has been made in understanding the biology of innate lymphoid cells (ILC) by adopting several well-known concepts in T cell biology. As such, flow cytometry gating strategies and markers, such as CD90, have been applied to indentify ILC. Here, we report that most non-NK intestinal ILC have a high expression of CD90 as expected, but surprisingly a sub-population of cells exhibit low or even no expression of this marker. CD90-negative and CD90-low CD127+ ILC were present amongst all ILC subsets in the gut. The frequency of CD90-negative and CD90-low CD127+ ILC was dependent on stimulatory cues in vitro and enhanced by dysbiosis in vivo. CD90-negative and CD90-low CD127+ ILC were a potential source of IL-13, IFNγ and IL-17A at steady state and upon dysbiosis- and dextran sulphate sodium-elicited colitis. Hence, this study reveals that, contrary to expectations, CD90 is not constitutively expressed by functional ILC in the gut

    The Neuroprotective Action of Amidated-Kyotorphin on Amyloid β Peptide-Induced Alzheimer’s Disease Pathophysiology

    Get PDF
    Kyotorphin (KTP, l-tyrosyl-l-arginine) is an endogenous dipeptide initially described to have analgesic properties. Recently, KTP was suggested to be an endogenous neuroprotective agent, namely for Alzheimer’s disease (AD). In fact, KTP levels were shown to be decreased in the cerebrospinal fluid of patients with AD, and recent data showed that intracerebroventricular (i.c.v.) injection of KTP ameliorates memory impairments in a sporadic rat model of AD. However, this administration route is far from being a suitable therapeutic strategy. Here, we evaluated if the blood-brain permeant KTP-derivative, KTP-NH2, when systemically administered, would be effective in preventing memory deficits in a sporadic AD animal model and if so, which would be the synaptic correlates of that action. The sporadic AD model was induced in male Wistar rats through i.c.v. injection of amyloid β peptide (Aβ). Animals were treated for 20 days with KTP-NH2 (32.3 mg/kg, intraperitoneally (i.p.), starting at day 3 after Aβ administration) before memory testing (Novel object recognition (NOR) and Y-maze (YM) tests). Animals were then sacrificed, and markers for gliosis were assessed by immunohistochemistry and Western blot analysis. Synaptic correlates were assessed by evaluating theta-burst induced long term potentiation (LTP) of field excitatory synaptic potentials (fEPSPs) recorded from hippocampal slices and cortical spine density analysis. In the absence of KTP-NH2 treatment, Aβ-injected rats had clear memory deficits, as assessed through NOR or YM tests. Importantly, these memory deficits were absent in Aβ-injected rats that had been treated with KTP-NH2, which scored in memory tests as control (sham i.c.v. injected) rats. No signs of gliosis could be detected at the end of the treatment in any group of animals. LTP magnitude was significantly impaired in hippocampal slices that had been incubated with Aβ oligomers (200 nM) in the absence of KTP-NH2. Co-incubation with KTP-NH2 (50 nM) rescued LTP toward control values. Similarly, Aβ caused a significant decrease in spine density in cortical neuronal cultures, and this was prevented by co-incubation with KTP-NH2 (50 nM). In conclusion, the present data demonstrate that i.p. KTP-NH2 treatment counteracts Aβ-induced memory impairments in an AD sporadic model, possibly through the rescuing of synaptic plasticity mechanisms.publishersversionpublishe

    Genetic ablation of inositol 1,4,5-Trisphosphate receptor type 2 (IP3R2) fails to modify disease progression in a mouse model of Spinocerebellar Ataxia type 3

    Get PDF
    Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, non-neuronal cells, including astrocytes, are also involved in SCA3 pathogenesis. Astrogliosis is a common pathological feature in SCA3 patients and animal models of the disease. However, the contribution of astrocytes to SCA3 is not clearly defined. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant IP3R in mediating astrocyte somatic calcium signals, and genetically ablation of IP3R2 has been widely used to study astrocyte function. Here, we aimed to investigate the relevance of IP3R2 in the onset and progression of SCA3. For this, we tested whether IP3R2 depletion and the consecutive suppression of global astrocytic calcium signalling would lead to marked changes in the behavioral phenotype of a SCA3 mouse model, the CMVMJD135 transgenic line. This was achieved by crossing IP3R2 null mice with the CMVMJD135 mouse model and performing a longitudinal behavioral characterization of these mice using well-established motor-related function tests. Our results demonstrate that IP3R2 deletion in astrocytes does not modify SCA3 progression.This work has been funded by National funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020, PTDC/NEUNMC/3648/2014 and COMPETE-FEDER (POCI-01-0145-FEDER-016818); fellowships to DCG (2021.08121.BD), DMF (SFRH/BD/147947/2019), JSC (SFRH/BD/140624/2018), ANC (SFRH/BPD/118779/2016), AVF (UMINHO/BIL-CNCG/2022/11), SGG (SFRH/BD/101298/2014), and JFV (2020.05109.BD); FCT Scientific Employment Stimulus (CEEC)—Individual Call position to SDS (CEECIND/00685/2020); grants from the Bial Foundation (037/18) and “the la Caixa” Foundation (LCF/PR/HR21/52410024) to JFO; and by the projects NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023, supported by the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). It was also supported by grants from the ICVS Scientific Microscopy Platform, a member of the national infrastructure PPBI—Portuguese Platform of Bioimaging (PPBI-POCI-01-0145-FEDER-022122 and national funds through the Foundation for Science and Technology (FCT)

    Yicathins B and C and analogues: total synthesis, lipophilicity and biological activities

    Get PDF
    Natural products had always be an important source of new hits and leads in drug discovery. The marine environment has been regarded as a significant souce of novel and exquisite bioactive compounds. Yicathins B and C are two marine derived xanthones that have shown antibacterial and antifungal activities. Herein, the total synthesis of these yicathins is reported for the first time as well as six novel analogues. As marine natural products tend to bear very lipophilic scaffolds, the lipophilicity of yicathins and its analogues was evaluated using the classical octanol:water system and a biomimetic model based system. As the xanthonic nucleus is a â privileged structureâ , other biological activities were evaluated, namely antitumor and anti-inflammatory activities. An interesting anti-inflammatory activity was identified for yicathins analogues that paves the way for the design of dual activity (anti-infective and anti-inflammatory) marine inspired xanthones derivatives.This work was supported through national funds provided by FCT/MCTES - Foundation for Science and Technology from the Minister of Science, Technology and Higher Education (PIDDAC) and European Regional Development Fund (ERDF) through the COMPETE - Programa Operacional Factores de Competitividade (POFC) programme, under the projects PTDC/MAR-BIO/4694/2014 (reference POCI-01-0145-FEDER-016790; Project 3599 - Promover a ProducAo Cientifica e Desenvolvimento Tecnologico e a ConstituicAo de Redes Tematicas (3599-PPCDT)) and PTDC/SAU-PUB/28736/2017 (reference POCI-01-0145-FEDER- 028736) in the framework of the programme PT2020. D. R. P. L. is grateful for research grant PTDC/MAR-BIO/4694/2014-BI-2017-003. J. X. S. thanks the FCT PhD Programmes and Programa Operacional Capital Humano (POCH), specifically the BiotechHealth Programme (Doctoral Programme on Cellular and Molecular Biotechnology Applied to Health Sciences), reference PD/00016/2012; through the FCT and POCH for PhD grants (SFRH/BD/98105/2013 and SFRH/BD/116167/2016). The authors would like to thank Sara Cravo and Gisela Adriano for the technical support, the Centro de Apoio Cientifico e Tecnoloxico a Investigation (C.A.C.T.I., University of Vigo, Pontevedra, Spain) for HRMS analysis, the Centro de Materiais da Universidade do Porto (CEMUP, Porto, Portugal) for HRMS, and the Departamento de Quimica da Universidade de Aveiro (Portuguese NMR network) for the NMR analysis

    T-Bet Controls Cellularity of Intestinal Group 3 Innate Lymphoid Cells.

    Get PDF
    Innate lymphoid cells (ILC) play a significant immunological role at mucosal surfaces such as the intestine. T-bet-expressing group 1 innate lymphoid cells (ILC1) are believed to play a substantial role in inflammatory bowel disease (IBD). However, a role of T-bet-negative ILC3 in driving colitis has also been suggested in mouse models questioning T-bet as a critical factor for IBD. We report here that T-bet deficient mice had a greater cellularity of NKp46-negative ILC3 correlating with enhanced expression of RORγt and IL-7R, but independent of signaling through STAT1 or STAT4. We observed enhanced neutrophilia in the colonic lamina propria (cLP) of these animals, however, we did not detect a greater risk of T-bet-deficient mice to develop spontaneous colitis. Furthermore, by utilizing an in vivo fate-mapping approach, we identified a population of T-bet-positive precursors in NKp46-negative ILC3s. These data suggest that T-bet controls ILC3 cellularity, but does do not drive a pathogenic role of ILC3 in mice with a conventional specific pathogen-free microbiota

    MicroRNA-142 Critically Regulates Group 2 Innate Lymphoid Cell Homeostasis and Function

    Get PDF
    Innate lymphoid cells are central to the regulation of immunity at mucosal barrier sites, with group 2 innate lymphoid cells (ILC2s) being particularly important in type 2 immunity. In this study, we demonstrate that microRNA(miR)-142 plays a critical, cell-intrinsic role in the homeostasis and function of ILC2s. Mice deficient for miR-142 expression demonstrate an ILC2 progenitor_biased development in the bone marrow, and along with peripheral ILC2s at mucosal sites, these cells display a greatly altered phenotype based on surface marker expression. ILC2 proliferative and effector functions are severely dysfunctional following Nippostrongylus brasiliensis infection, revealing a critical role for miR-142 isoforms in ILC2-mediated immune responses. Mechanistically, Socs1 and Gfi1 expression are regulated by miR-142 isoforms in ILC2s, impacting ILC2 phenotypes as well as the proliferative and effector capacity of these cells. The identification of these novel pathways opens potential new avenues to modulate ILC2-dependent immune functions

    Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    Get PDF
    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs
    corecore