8 research outputs found

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Anatomic vs. non-anatomic liver resection for hepatocellular carcinoma: standard of care or unfilled promises?

    No full text
    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death not only in the United States but in the world. One of the curative treatment options for early-stage HCC is surgical resection, which can be divided into two approaches: anatomic and nonanatomic. The theoretical advantage of anatomic liver resection is excising the entire primary tumor along with adjacent liver parenchyma containing micrometastases that reside in the surrounding portal tributaries. However, the superiority of anatomic vs. nonanatomic liver resection in patients with HCC is controversial. While this is a feasible strategy for patients with preserved liver function, it may not be ideal for patients with cirrhosis, who rely on parenchymal-sparing or nonanatomic approaches to maximize their future liver remnant and prevent post-operative liver failure. This review identifies and critically analyzes the evidence for anatomic vs. nonanatomic liver resection for HCC

    Cefoxitin versus piperacillin–tazobactam as surgical antibiotic prophylaxis in patients undergoing pancreatoduodenectomy: protocol for a randomised controlled trial

    No full text
    Introduction Although antibiotic prophylaxis is established in reducing postoperative surgical site infections (SSIs), the optimal antibiotic for prophylaxis in pancreatoduodenectomy (PD) remains unclear. The study objective is to evaluate if administration of piperacillin–tazobactam as antibiotic prophylaxis results in decreased 30-day SSI rate compared with cefoxitin in patients undergoing elective PD.Methods and analysis This study will be a multi-institution, double-arm, non-blinded randomised controlled superiority trial. Adults ≥18 years consented to undergo PD for all indications who present to institutions participating in the National Surgical Quality Improvement Program Hepato-Pancreato-Biliary (NSQIP HPB) Collaborative will be included. Data collection will use the NSQIP HPB Collaborative Surgical Clinical Reviewers. Patients will be randomised to either 1–2 g intravenous cefoxitin or 3.375–4.5 g intravenous piperacillin–tazobactam within 60 min of surgical incision. The primary outcome will be 30-day postoperative SSI rate following PD. Secondary outcomes will include 30-day postoperative mortality; specific postoperative complication rate; and unplanned reoperation, length of stay, and hospital readmission. A subset of patients will have bacterial isolates and sensitivities of intraoperative bile cultures and SSIs. Postoperative SSIs and secondary outcomes will be analysed using logistic regression models with the primary predictor as the randomised treatment group. Additional adjustment will be made for preoperative biliary stent presence. Additionally, bacterial cultures and isolates will be summarised by presence of bacterial species and antibiotic sensitivities.Ethics and dissemination This study is approved by the Institutional Review Board at Memorial Sloan Kettering Cancer Center. This trial will evaluate the effect of piperacillin–tazobactam compared with cefoxitin as antibiotic prophylaxis on the hazard of postoperative SSIs. The results will be disseminated regardless of the effect of the intervention on study outcomes. The manuscript describing the effect of the intervention will be submitted to a peer-reviewed journal when data collection and analyses are complete.Trial registration number NCT03269994

    Antibody‐induced vascular inflammation skews infiltrating macrophages to a novel remodeling phenotype in a model of transplant rejection

    No full text
    HLA donor-specific antibodies (DSAs) binding to vascular endothelial cells of the allograft trigger inflammation, vessel injury, and antibody-mediated rejection (AMR). Accumulation of intragraft-recipient macrophages is a histological characteristic of AMR, which portends worse outcome. HLA class I (HLA I) DSAs enhance monocyte recruitment by activating endothelial cells and engaging FcγRs, but the DSA-activated donor endothelial influence on macrophage differentiation is unknown. In this study, we explored the consequence of DSA-activated endothelium on infiltrating monocyte differentiation. Here we show that cardiac allografts from murine recipients treated with MHC I DSA upregulated genes related to monocyte transmigration and Fc receptor stimulation. Human monocytes co-cultured with HLA I IgG-stimulated primary human endothelium promoted monocyte differentiation into CD68+ CD206+ CD163+ macrophages (M(HLA I IgG)), whereas HLA I F(ab')2 stimulated endothelium solely induced higher CD206 (M(HLA I F(ab')2 )). Both macrophage subtypes exhibited significant changes in discrete cytokines/chemokines and unique gene expression profiles. Cross-comparison of gene transcripts between murine DSA-treated cardiac allografts and human co-cultured macrophages identified overlapping genes. These findings uncover the role of HLA I DSA-activated endothelium in monocyte differentiation, and point to a novel, remodeling phenotype of infiltrating macrophages that may contribute to vascular injury

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore