257 research outputs found

    Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement

    Get PDF
    Background Infection is an infrequent but serious complication of prosthetic joint surgery. These infections will usually not clear until the implant is removed and re-implantation has a high failure rate, especially when Pseudomonas aeruginosa is involved. Material and methods We examined Pseudomonas aeruginosa biofilm formation on plain and gentamicin-loaded bone cement with confocal scanning laser microscopy (CSLM). Two different stains were applied in order to visualize and quantify the distribution of bacterial cells and extracellular polymeric substances (slime) from the bone cement surface to the top of the biofilm. Staining with LIVE/DEAD viability stain differentiated between live and dead bacteria within the biofilm, and slime production was evaluated after staining with Calcofluor white. Results CSLM showed that the biofilm was a nonuniform structure of variable thickness, with differences in local bacterial cell and slime densities. Incorporation of gentamicin in bone cement resulted in a 44% reduction in bacterial viability, while the slime density increased significantly. In addition, conventional plate counting showed the development of small-colony variants on gentamicin-loaded bone cement with a decreased sensitivity for gentamicin (MIC: 8 mg/L), as compared with normal-sized colonies taken from plain and gentamicin-loaded bone cement (MIC: 3 mg/L). The enhanced slime production on antibiotic-loaded bone cement, together with the formation of small-colony variants, resulted in decreased susceptibility to antibiotics-probably concomitant with the onset of persistent and relapsing infections. Interpretation In the clinical situation, our findings help to explain the frequent re-implantation failure of joint replacements infected with P. aeruginosa when the procedure has been performed using antibiotic-loaded bone cement

    A biodegradable antibiotic delivery system based on poly-(trimethylene carbonate) for the treatment of osteomyelitis

    Get PDF
    Background and purpose Many investigations on biodegradable materials acting as an antibiotic carrier for local drug delivery are based on poly(lactide). However, the use of poly(lactide) implants in bone has been disputed because of poor bone regeneration at the site of implantation. Poly(trimethylene carbonate) (PTMC) is an enzymatically degradable polymer that does not produce acidic degradation products. We explored the suitability of PTMC as an antibiotic releasing polymer for the local treatment of osteomyelitis

    A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry

    Get PDF
    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions

    A biodegradable gentamicin-hydroxyapatite-coating for infection prophylaxis in cementless hip prostheses

    Get PDF
    A degradable, poly (lactic-co-glycolic acid) (PLGA), gentamicin-loaded prophylactic coating for hydroxyapatite (HA)-coated cementless hip prostheses is developed with similar antibacterial efficacy as offered by gentamicin-loaded cements for fixing traditional, cemented prostheses in bone. We describe the development pathway, from in vitro investigation of antibiotic release and antibacterial properties of this PLGA-gentamicin-HA-coating in different in vitro models to an evaluation of its efficacy in preventing implant-related infection in rabbits. Bone in-growth in the absence and presence of the coating was investigated in a canine model. The PLGA-gentamicin-HA-coating showed high-burst release, with antibacterial efficacy in agar-assays completely disappearing after 4 days, minimising risk of inducing antibiotic resistance. Gentamicin-sensitive and gentamicin-resistant staphylococci were killed by the antibiotic-loaded coating, in a simulated prosthesis-related interfacial gap. PLGA-gentamicin-HA-coatings prevented growth of bioluminescent staphylococci around a miniature-stem mounted in bacterially contaminated agar, as observed using bio-optical imaging. PLGA-gentamicin-HA-coated pins inserted in bacterially contaminated medullary canals in rabbits caused a statistically significant reduction in infection rates compared to HA-coated pins without gentamicin. Bone ingrowth to PLGA-gentamicin-HA-coated pins, in condylar defects of Beagle dogs was not impaired by the presence of the degradable, gentamicin-loaded coating. In conclusion, the PLGA-gentamicin-HA-coating constitutes an effective strategy for infection prophylaxis in cementless prostheses

    The prevalence of triggers in paediatric migraine: a questionnaire study in 102 children and adolescents

    Get PDF
    The prevalence and characterization of migraine triggers have not been rigorously studied in children and adolescents. Using a questionnaire, we retrospectively studied the prevalence of 15 predefined trigger factors in a clinic-based population. In 102 children and adolescents fulfilling the Second Edition of The International Headache Classification criteria for paediatric migraine, at least one migraine trigger was reported by the patient and/or was the parents’ interpretation in 100% of patients. The mean number of migraine triggers reported per subject was 7. Mean time elapsed between exposure to a trigger factor and attack onset was comprised between 0 and 3 h in 88 patients (86%). The most common individual trigger was stress (75.5% of patients), followed by lack of sleep (69.6%), warm climate (68.6%) and video games (64.7%). Stress was also the most frequently reported migraine trigger always associated with attacks (24.5%). In conclusion, trigger factors were frequently reported by children and adolescents with migraine and stress was the most frequent

    Increasing risk of revision due to deep infection after hip arthroplasty: A study on 97,344 primary total hip replacements in the Norwegian Arthroplasty Register from 1987 to 2007

    Get PDF
    Background and purpose Over the decades, improvements in surgery and perioperative routines have reduced the incidence of deep infections after total hip arthroplasty (THA). There is, however, some evidence to suggest that the incidence of infection is increasing again. We assessed the risk of revision due to deep infection for primary THAs reported to the Norwegian Arthroplasty Register (NAR) over the period 1987–2007

    β1 Integrin-Mediated Adhesion Signalling Is Essential for Epidermal Progenitor Cell Expansion

    Get PDF
    Background: There is a major discrepancy between the in vitro and in vivo results regarding the role of b1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of b1 integrins suggested that epidermis can form and be maintained in their absence, while in vitro data have shown a fundamental role for these adhesion receptors in stem/progenitor cell expansion and differentiation. Methodology/Principal Findings: To elucidate this discrepancy we generated hypomorphic mice expressing reduced b1 integrin levels on keratinocytes that developed similar, but less severe defects than mice with b1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of b1 integrin expression. A similar phenomenon was observed in aged mice with a complete, skin-specific ablation of the b1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of b1 integrin expressing keratinocytes was even further accelerated in situations of increased keratinocyte proliferation such as wound healing. Conclusions/Significance: These data demonstrate that expression of b1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis

    Photodynamic Therapy Can Induce a Protective Innate Immune Response against Murine Bacterial Arthritis via Neutrophil Accumulation

    Get PDF
    Background: Local microbial infections induced by multiple-drug-resistant bacteria in the orthopedic field can be intractable, therefore development of new therapeutic modalities is needed. Photodynamic therapy (PDT) is a promising alternative modality to antibiotics for intractable microbial infections, and we recently reported that PDT has the potential to accumulate neutrophils into the infected site which leads to resolution of the infection. PDT for cancer has long been known to be able to stimulate the innate and adaptive arms of the immune system. Methodology/Principal Findings: In the present study, a murine methicillin-resistant Staphylococcus aureus (MRSA) arthritis model using bioluminescent MRSA and polystyrene microparticles was established, and both the therapeutic (Th-PDT) and preventive (Pre-PDT) effects of PDT using methylene blue as photosensitizer were examined. Although Th-PDT could not demonstrate direct bacterial killing, neutrophils were accumulated into the infectious joint space after PDT and MRSA arthritis was reduced. With the preconditioning Pre-PDT regimen, neutrophils were quickly accumulated into the joint immediately after bacterial inoculation and bacterial growth was suppressed and the establishment of infection was inhibited. Conclusions/Significance: This is the first demonstration of a protective innate immune response against a bacterial pathogen produced by PDT.National Institutes of Health (U.S.) (Grant number R01AI050875

    Complete Genome Sequence of Crohn's Disease-Associated Adherent-Invasive E. coli Strain LF82

    Get PDF
    International audienceBACKGROUND: Ileal lesions of Crohn's disease (CD) patients are abnormally colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to invade and to replicate within intestinal epithelial cells and macrophages. PRINCIPAL FINDINGS: We report here the complete genome sequence of E. coli LF82, the reference strain of adherent-invasive E. coli associated with ileal Crohn's disease. The LF82 genome of 4,881,487 bp total size contains a circular chromosome with a size of 4,773,108 bp and a plasmid of 108,379 bp. The analysis of predicted coding sequences (CDSs) within the LF82 flexible genome indicated that this genome is close to the avian pathogenic strain APEC_01, meningitis-associated strain S88 and urinary-isolated strain UTI89 with regards to flexible genome and single nucleotide polymorphisms in various virulence factors. Interestingly, we observed that strains LF82 and UTI89 adhered at a similar level to Intestine-407 cells and that like LF82, APEC_01 and UTI89 were highly invasive. However, A1EC strain LF82 had an intermediate killer phenotype compared to APEC-01 and UTI89 and the LF82 genome does not harbour most of specific virulence genes from ExPEC. LF82 genome has evolved from those of ExPEC B2 strains by the acquisition of Salmonella and Yersinia isolated or clustered genes or CDSs located on pLF82 plasmid and at various loci on the chromosome. CONCLUSION: LF82 genome analysis indicated that a number of genes, gene clusters and pathoadaptative mutations which have been acquired may play a role in virulence of AIEC strain LF82
    corecore