2,085 research outputs found

    Posaconazole in the management of refractory invasive fungal infections

    Get PDF
    The rising incidence of invasive fungal infections due to the expanding population of immunocompromised hosts and the increasing prevalence of fungal resistance has led to the need for novel antifungal agents. Posaconazole, a new member of the triazole class has demonstrated in vitro activity against a broad spectrum of fungi and clinical activity against various fungal pathogens, including Aspergillus spp., Candida spp., zygomycetes, and Fusarium spp. To date, posaconazole has been approved for prophylaxis of invasive fungal infections in stem cell transplant recipients with acute graft versus host disease (GVHD) and neutropenic patients receiving intensive induction chemotherapy for acute myelogenous leukemia and myelodys-plastic syndrome. In addition, it has been licensed for use in oropharyngeal candidiasis and for salvage therapy in invasive aspergillosis, fusariosis, coccidioidomycosis, chromoblastomycosis, and mycetoma. Posaconazole is the only azole with activity against zygomycetes and other difficult-to-treat fungi, representing a potential treatment option for refractory invasive mycosis. This article reviews available preclinical and clinical data of posaconazole, focusing on its role in the teatment of refractory invasive fungal infections

    Mikromechanische Modellierung morphotroper PZT-Keramiken

    Get PDF
    Morphotrope PZT-Keramiken sind Festkörperlösungen aus Bleizirkonat und Bleititanat mit chemischen Zusammensetzungen um die 47% Ti-Anteil. Sie weisen im gepolten Zustand die größten piezoelektrischen Koppelkonstanten auf und sind daher von speziellem Interesse. Zur Vorhersage des Polungszustandes und der Bauteilfestigkeit in komplexen Bauteilen werden elektromechanisch gekoppelte Materialmodelle benötigt. In dieser Arbeit wird ein mikromechanischer Modellansatz aus der Literatur aufgegriffen. Ausgangspunkt ist ein dreidimensionales tetragonales Modell, welches ein repräsentatives Volumenelement des Kornverbundes und ein mikroskopisches Kornmodell vereint. Damit gelingt die Beschreibung der Korninteraktionen infolge unterschiedlicher Polungszustände der Körner. Die Domänenstruktur der Körner wird mittels der Volumenanteile der kristallographischen Varianten dargestellt. Ein vereinfachter Satz an mikroskopischen Materialkonstanten wird anhand experimenteller Daten und theoretischer Betrachtungen aus der Literatur abgeleitet. Die für zwei Lastfälle berechneten makroskopischen Materialantworten zeigen explizit, dass das tetragonale Modell nicht in der Lage ist, das Verhalten morphotroper PZT-Keramiken nachzubilden. Aus diesem Grund wird das Modell im Hinblick auf die besondere kristallographische Struktur morphotroper PZT-Keramiken um eine rhomboedrische Phase in veränderlichen Anteilen erweitert. Die somit berechneten makroskopischen Antworten stimmen sowohl quantitativ als auch qualitativ gut mit experimentellen Ergebnissen überein. Der Einfluss der im Modell berücksichtigten Kristallstruktur auf die makroskopische Materialantwort wird in der Arbeit ausführlich analysiert.Morphotropic PZT ceramics are solid solutions made of lead zirconate and lead titanate with chemical composition around 47% Ti-content. When poled they possess the greatest piezoelectric coupling constants for which they are of special interest. Predicting the poling condition and the strength in complex devices requires electromechanically coupled material models. Within this work, a micromechanical modelling approach is utilised. Starting point is a three-dimensional tetragonal model, which combines a representative volume element of the grain compound together with a microscopic grain model. This allows the consideration of grain interaction due to different poling conditions of the grains. The domain structure of the grains is captured by volume fractions of the crystallographic variants. A simplified set of microscopic material constants is derived from experimental and theoretical data given in the literature. The macroscopic material response, which is computed for two load cases, shows explicitly that the tetragonal model is not capable of reproducing the behaviour of morphotropic PZT ceramics. Therefore, the model is extended by the rhombohedral phase in varying quantity with view of the specific crystallographic structure of morphotropic PZT ceramics. The so computed macroscopic response shows a quantitatively as well as qualitatively good agreement with experimental results. The effect of the crystallographic structure which is considered within the model on the macroscopic material response is extensively analysed

    Molecular Pathogenesis of MALT Lymphoma

    Get PDF
    Approximately 8% of all non-Hodgkin lymphomas are extranodal marginal zone B cell lymphoma of mucosa associated lymphoid tissue (MALT), also known as MALT lymphoma, which was first described in 1983 by Isaacson and Wright. MALT lymphomas arise at a wide range of different extranodal sites, with the highest frequency in the stomach, followed by lung, ocular adnexa, and thyroid, and with a low percentage in the small intestine. Interestingly, at least 3 different, apparently site-specific, chromosomal translocations and missense and frameshift mutations, all pathway-related genes affecting the NF-κB signal, have been implicated in the development and progression of MALT lymphoma. However, these genetic abnormalities alone are not sufficient for malignant transformation. There is now increasing evidence suggesting that the oncogenic product of translocation cooperates with immunological stimulation in oncogenesis, that is, the association with chronic bacterial infection or autoaggressive process. This review mainly discusses MALT lymphomas in terms of their genetic aberration and association with chronic infections and summarizes recent advances in their molecular pathogenesis

    MiR-199a and miR-497 are associated with better overall survival due to increased chemosensitivity in diffuse large b-cell lymphoma patients

    Get PDF
    Micro-RNAs (miRNAs) are short non-coding single-stranded RNA molecules regulating gene expression at the post-transcriptional level. miRNAs are involved in cell development, differentiation, apoptosis, and proliferation. miRNAs can either function as tumor suppressor genes or oncogenes in various important pathways. The expression of specific miRNAs has been identified to correlate with tumor prognosis. For miRNA expression analysis real-time PCR on 81 samples was performed, including 63 diffuse large B-cell lymphoma (DLBCL, 15 of germinal center B-cell like subtype, 17 non germinal center B-cell, 23 transformed, and eight unclassified) and 18 controls, including nine peripheral B-cells, 5 germinal-center B-cells, four lymphadenitis samples, and 4 lymphoma cell lines (RI-1, SUDHL4, Karpas, U2932). Expression levels of a panel of 11 miRNAs that have been previously involved in other types of cancer (miR-15b_2, miR-16_1*, miR-16_2, miR-16_2*, miR-27a, miR-27a*, miR-98-1, miR-103a, miR-185, miR-199a, and miR-497) were measured and correlated with clinical data. Furthermore, cell lines, lacking miR-199a and miR-497 expression, were electroporated with the two respective miRNAs and treated with standard immunochemotherapy routinely used in patients with DLBCL, followed by functional analyses including cell count and apoptosis assays. Seven miRNAs (miR-16_1*, miR-16_2*, miR-27a, miR-103, miR-185, miR-199, and miR-497) were statistically significantly up-regulated in DLBCL compared to normal germinal cells. However, high expression of miR-497 or miR-199a was associated with better overall survival (p = 0.042 and p = 0.007). Overexpression of miR-199a and miR-497 led to a statistically significant decrease in viable cells in a dose-dependent fashion after exposure to rituximab and various chemotherapeutics relevant in multi-agent lymphoma therapy. Our data indicate that elevated miR-199a and miR-497 levels are associated with improved survival in aggressive lymphoma patients most likely by modifying drug sensitivity to immunochemotherapy. This functional impairment may serve as a potential novel therapeutic target in future treatment of patients with DLBCL

    Early Miocene tectono-sedimentary shift in the eastern North Alpine Foreland Basin and its relation to changes in tectonic style in the Eastern Alps

    Get PDF
    A striking difference along the Alpine Orogen is the style of collisional tectonics during the Oligo-Miocene, with the onset of escape tectonics in the Eastern Alps (Fig. 1A). The indentation of the Adriatic Plate into the Eastern Alpine Orogen resulted in the formation of conjugate dextral and sinistral strike-slip faults in the vicinity of the Tauern Window. Moreover, major changes occurred in the foreland of the Eastern and Southern Alps in the Early Miocene, with the cessation of the northern Alpine front propagation and the onset of thrusting along the Southern Alpine Front. In this study, we present new results from structural, stratigraphic and subsidence analyses of the eastern North Alpine Foreland Basin (NAFB; Fig. 1B) as part of the “Mountain Building in 4 Dimensions” project, German branch of the European AlpArray initiative, which aims at better understanding the deep crustal-mantle structures of the Alpine Orogen and their relation to surface processes. Our results show a first phase of onset of foreland sedimentation in the eastern NAFB between c. 33-28 Ma, followed by a strong tectonic-driven subsidence between c. 28-25 Ma ending by a phase of erosion and the formation of a basin-wide Northern Slope Unconformity (NSU; Fig. 1C & 1D). During this time period, the rift-related Mesozoic normal faults of the European platform were reactivated and are capped by the NSU (Fig. 1D). We interpret this phase as an increase in the flexure of the subducting European Plate under the growing Alpine Orogen. Between 25-19 Ma, the eastern NAFB remained in a deep-marine, underfilled state with a gently increase in subsidence. A major shift took place around 19-17 Ma with strong tectonic-driven uplift, ranging from 200 m (absolute minimum) to 1200 m depending on uncertainties on paleo-water depths, and rapid sedimentary infill of the basin (Fig. 1C & 1D). We discuss the possible causes for this major tectono-sedimentary shift in the eastern NAFB in relation to contemporaneous changes in collisional tectonics within the Eastern and Southern Alps, and with a potential Early Miocene slab break-off event beneath the Eastern Alps

    Effects of arterial cannulation stress on regional cerebral blood flow in major depressive disorder

    Get PDF
    Individuals with major depressive disorder (MDD) display abnormal neurophysiological responses to psychological stress but little is known about their neurophysiological responses to physiological stressors. Using [15O-H2O] positron emission tomography we assessed whether the regional cerebral blood flow (rCBF) response to arterial cannulation differed between patients with MDD and healthy controls (HCs). Fifty-one MDD patients and 62 HCs were scanned following arterial cannulation and 15 MDD patients and 17 HCs were scanned without arterial cannulation. A region-of-interest analysis showed that a significantly increased rCBF of the anterior cingulate cortex and right amygdala was associated with arterial cannulation in MDD. A whole brain analysis showed increased rCBF of the right post-central gyrus, left temporopolar cortex, and right amygdala during arterial cannulation in MDD patients. The rCBF in the right amygdala was significantly correlated with depression severity. Conceivably, the limbic response to invasive physical stress is greater in MDD subjects than in HCs

    Comparative Population Assessments of Nautilus sp. in the Philippines, Australia, Fiji, and American Samoa Using Baited Remote Underwater Video Systems

    Full text link
    The extant species of Nautilus and Allonautilus (Cephalopoda) inhabit fore-reef slope environments across a large geographic area of the tropical western Pacific and eastern Indian Oceans. While many aspects of their biology and behavior are now well-documented, uncertainties concerning their current populations and ecological role in the deeper, fore-reef slope environments remain. Given the historical to current day presence of nautilus fisheries at various locales across the Pacific and Indian Oceans, a comparative assessment of the current state of nautilus populations is critical to determine whether conservation measures are warranted. We used baited remote underwater video systems (BRUVS) to make quantitative photographic records as a means of estimating population abundance of Nautilus sp. at sites in the Philippine Islands, American Samoa, Fiji, and along an approximately 125 km transect on the fore reef slope of the Great Barrier Reef from east of Cairns to east of Lizard Island, Australia. Each site was selected based on its geography, historical abundance, and the presence (Philippines) or absence (other sites) of Nautilus fisheries The results from these observations indicate that there are significantly fewer nautiluses observable with this method in the Philippine Islands site. While there may be multiple possibilities for this difference, the most parsimonious is that the Philippine Islands population has been reduced due to fishing. When compared to historical trap records from the same site the data suggest there have been far more nautiluses at this site in the past. The BRUVS proved to be a valuable tool to measure Nautilus abundance in the deep sea (300–400 m) while reducing our overall footprint on the environment
    corecore