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Approximately 8% of all non-Hodgkin lymphomas are extranodal marginal zone B cell lymphoma of mucosa associated lymphoid
tissue (MALT), also known as MALT lymphoma, which was first described in 1983 by Isaacson and Wright. MALT lymphomas
arise at a wide range of different extranodal sites, with the highest frequency in the stomach, followed by lung, ocular adnexa, and
thyroid, and with a low percentage in the small intestine. Interestingly, at least 3 different, apparently site-specific, chromosomal
translocations and missense and frameshift mutations, all pathway-related genes affecting the NF-𝜅B signal, have been implicated
in the development and progression of MALT lymphoma. However, these genetic abnormalities alone are not sufficient for
malignant transformation. There is now increasing evidence suggesting that the oncogenic product of translocation cooperates
with immunological stimulation in oncogenesis, that is, the association with chronic bacterial infection or autoaggressive process.
This review mainly discusses MALT lymphomas in terms of their genetic aberration and association with chronic infections and
summarizes recent advances in their molecular pathogenesis.

1. Introduction

Approximately 8% of all non-Hodgkin lymphomas are extra-
nodal marginal zone B cell lymphoma of mucosa associated
lymphoid tissue (MALT), also known as MALT lymphoma,
which was first described in 1983 by Isaacson and Wright
[1, 2]. They discovered that primary low-grade gastric B
cell lymphomas and immunoproliferative small intestinal
disease had more histological features in common with those
of mucosa associated lymphoid tissue than with peripheral
lymph nodes [1]. Extranodal low-grade lymphomas arising
at other mucosal organs, including the salivary gland, lung,
and thyroid, showed similar histological and clinical fea-
tures [3–6] establishing the term “MALT lymphoma.” MALT
lymphomas arise at a wide range of different extranodal
sides, including the stomach (70%), lung (14%), ocular
adnexa (12%), thyroid (4%), and small intestine (including
immunoproliferative small intestinal disease; 1%) [7].

The histological feature of MALT lymphoma comprises
infiltration of the marginal zone and spreading diffusely into
the surrounding tissue. MALT lymphoma cells share the
same cytological and immunophenotypical (CD20+, CD21+,
CD35+, IgM+, and IgD−) features as marginal zone B cells

prompting the World Health Organization to designate this
lymphoma as “extranodal marginal zone B cell lymphoma
of mucosa associated lymphoid tissue (MALT lymphoma)”
[8].The lymphoma cells often resemble follicle-centre centro-
cytes, small lymphocytes, or the so-calledmonocytoid B cells.
Another important histological feature of it is the presence
of lymphoepithelial lesions formed by the lymphoma cell
invasion of individual mucosal glands or other epithelial
structures. Transformed blasts and plasma cells are scattered,
present beneath the surface epithelium, possibly indicating
that the MALT lymphoma might participate in the immune
response.The lymphoma cells also enter the germinal centers
of nonneoplastic B cell follicles—a process known as follicu-
lar colonization [9].

In the case of gastric MALT lymphoma, the disease is
remarkably indolent and tends to remain localized in the
stomach for long periods. The ten-year survival rate for
gastric MALT lymphoma is close to 90% with a disease-
free survival of approximately 70% [10, 11]. However, in
rare instances, MALT lymphoma can progress and trans-
form into aggressive high-grade tumours—extranodal diffuse
large B cell lymphoma (eDLBCL)—whereby the ten-year
survival rate drops to approximately 42% [10]. eDLBCLs
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show a more frequent BCL6 expression and have a better
overall survival rate than nodal cases of DLBCL [12]. The
foci of eDLBCLmay be seen inMALT lymphoma, suggesting
a transformation from one into the other. This has been
confirmed by the demonstration of identically rearranged
immunoglobulin (Ig) genes between the low- and high-grade
components of the same cases [13]. In some cases of eDLBCL
in which the low-gradeMALT lymphoma component cannot
be detected transformedMALT lymphoma is supposed to be
completely overgrown by the eDLBCLs. Others are primary
eDLBCLs with a germinal centered-like phenotype (CD10−
andBCL6+) [10]. TransformedMALT lymphomas areCD10−
and BCL2− [14], but, in contrast to MALT lymphoma, they
usually express BCL6. However, there is no difference in
clinical behavior between transformedMALT lymphoma and
eDLBCL [10].

2. Genetic Aberrations

2.1. Translocations. There are four main recurrent chro-
mosomal translocations associated with the pathogene-
sis of MALT lymphomas: t(1;14)(p22;q32), t(11;18)(q21;q21),
t(14;18)(q32;q21), and t(3;14)(p14.1;q32) [15–18]. The fre-
quency of genetic aberrations is also dependent on the
primary site of disease. Translocation t(11;18)(q21;q21) was
mainly found in pulmonary and gastric tumors, whereas
t(14;18)(q32;q21) was most detected in ocular adnexal, orbit,
skin, and salivary gland MALT lymphoma [19] (Figure 1).

The t(1;14)(p22;q32) translocation occurs in 1% to 2% of
MALT lymphomas and has been reported in the stomach,
lung, and skin [19]. The entire coding sequence of the BCL10
gene on chromosome 1 is relocated to the immunoglobulin
heavy chain (IgH) enhancer region on chromosome 14
resulting in the nuclear overexpression of the BCL10 pro-
tein. The t(1;14)(p22;q32) translocation has exclusively been
reported in MALT lymphoma, and these cases typically dis-
play additional genomic alterations. Patients with advanced
stage MALT lymphoma exhibit this translocation and do not
respond to Helicobacter pylori (H. pylori) eradication [20].

The t(14;18)(q32;q21) translocation occurring in 15% to
20% of MALT lymphomas brings theMALT1 gene under the
transcriptional control of the IgH enhancer region on chro-
mosome 14 [17]. This translocation occurs more frequently
in nongastrointestinal MALT lymphomas. In contrast to
t(11;18)(q21;q21), the t(14;18)(q32;q21) is frequently associated
with other cytogenetic abnormalities [19]. t(14;18)(q32;q21)
positive cases also show an overexpression of the BCL10
protein but display cytoplasmatic localization in contrast
to t(1;14)(p22;q32) and t(11;18)(q21;q21) positive MALT lym-
phomas [21, 22].

The t(11;18)(q21;q21) translocation is the most common
translocation, occurring in 15–40% of all MALT lymphomas
[16, 19]. This translocation is restricted to MALT lymphomas
and has not been found in nodal or splenic marginal zone
lymphomas (MZL). In most of these translocation-positive
cases, it is the sole chromosomal aberration and only in
exceptional cases has it been detected in de novo DLBCL
arising at mucosal sites [23–25]. The t(11;18)(q21;q21) has
been found in MALT lymphomas at a number of different

anatomic sites, including lung, stomach, intestine, and, less
commonly, skin, orbit, and salivary gland [19, 26]. It has
also been associated with cases that do not respond to H.
pylori eradication [27, 28] and is rarely seen in transformed
MALT lymphomas [25]. The t(11;18)(q21;q21) translocation
represents the fusion of the apoptosis inhibitor 2—named
BIRC2 (API2)—gene on chromosome 11 and the MALT
lymphoma associated translocation 1 (MALT1) gene on chro-
mosome 18 [29]. Breakpoints observed in this translocation
are clustered in the region of intron 7 and exon 8 of
the BIRC2 gene and introns 4, 6, 7, and 8 of the MALT1
gene. High frequencies of deletions and duplications in both
genes are also found, which implies that multiple double-
strand DNA breaks (DSBs) must have occurred during the
translocation process appearing as a result from illegitimate
nonhomologous end joining after DSBs [30]. The resulting
fusion transcript always comprises the N-terminal BIRC2
with three intact baculovirus inhibitor of apoptosis repeat
(BIR) domains and the C-terminalMALT1 region containing
an intact caspase-like domain [16, 26, 31]. t(11;18)(q21;q21)
cases show a nuclear overexpression of the BCL10 protein
[20].

The t(3;14)(p14.1;q32) translocation has been most
recently described and establishes the juxtaposition of the
transcription factor FOXP1 next to the enhancer region of
the IgH chain genes [18]. Overexpression of FOX1P analysed
by chromatin immunoprecipitation in lymphoma cells
demonstrates that FOX1P acts as transcriptional repressor of
multiple proapoptotic genes repressing caspase-dependent
apoptosis [32].

The occurrence of the recurrent translocations
t(1;14)(p22;q32), t(14;18)(q32;q21), and t(11;18)(q21;q21)
in MALT lymphoma, constitutively activating the NF-
𝜅B pathway by the association of BCL10 and MALT1
in malignant lymphocytes, defines this pathway as an
oncogenic event [33, 34]. Physiologically, BCL10 binds to
the Ig-like domain of MALT1, and this binding induces the
MALT1 oligomerization [33]. The BCL10-MALT1 complex
promotes the ubiquitylation of I𝜅B kinase-𝛾 and NF-𝜅B is
released to translocate into the nucleus and to transactivate
genes, such as those encoding factors for cytokines and
growth factors for cellular activation, proliferation, and
survival [35]. In MALT lymphoma with t(1;14)(p22;q32),
BCL10 is believed to form oligomers through its CARD
domain without the need for upstream signaling and thus
triggers the MALT1 oligomerization and aberrant NF-𝜅B
activation. In lymphoma cases with t(14;18)(q32;q21),MALT1
is overexpressed. MALT1 does not possess a structural
domain mediating self-oligomerization and it does not
activate NF-𝜅B in vitro [33, 34]. It seems likely that MALT1
interacts with and stabilizes BCL10, causing its accumulation
in the cytoplasm of t(14;18)(q32;q21) positive tumor cells
resulting in oligomerization of MALT1 and activation of
NF-𝜅B [36]. In t(11;18)(q21;q21) positive MALT lymphomas
the BIR domain of the BIRC2-MALT1 mediates self-
oligomerization, which in turn leads to NF-𝜅B activation
[37, 38].

However, two different transgenic mice—overexpressing
either of the two translocations, BCL10 or BIRC2-MALT1,
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Figure 1: Translocations affecting the NF-𝜅B activation pathway. (a) Signaling from the TLR, IL-1R, and antigen receptor activates the
canonical NF-𝜅B pathway, which is characterized by activation of the IKK complex, phosphorylation, and degradation of I𝜅B. TNFAIP3
is a negative regulator. (b) t(1;14)(p22;q32) results in the nuclear overexpression of the BCL10 protein. It is believed to form oligomers through
its CARD domain and so it triggers MALT1 oligomerization and aberrant NF-𝜅B activation. (c) t(14;18)(q32;q21) causes overexpression of
MALT1. It is thought that it oligomerizes through interaction with BCL10 causing NF-𝜅B activation. (d) t(11;18)(q21;q21), the BIR domain of
the BIRC2-MALT1, mediates self-oligomerization leading to an activation of NF-𝜅B. TLR: Toll-like receptor; IL-1R: interleukin-1 receptor;
BCR: B cell receptor; TCR: T cell receptor; RIP1: receptor interacting protein 1; TRAF: TNF-associated factor; TAK1: transforming growth
factor beta activated kinase 1; TAB: TAK binding protein; IKK: inhibitor of NF-𝜅B kinase; I𝜅B: inhibitor of NF-𝜅B.

seen frequently in MALT lymphomas—develop splenic
marginal zone hyperplasia, but not lymphoma [39, 40].
However, Sagaert et al. [41] reported lymphoma development
when BIRC2-MALT1 mice were exposed to antigen stimula-
tion. Altogether, these data indicate that inMALT lymphoma
chromosome translocations alone are not sufficient for full
malignant transformation. Cooperation with a chronic infec-
tious process seems to be necessary for lymphomagenesis.
Recently, a novelmolecularmechanismof the BIRC2-MALT1
fusion protein has been identified [42]. Nie et al. demon-
strated that the tumor suppressor gene LIMA1 binds BIRC2
and is proteolytically cleaved byMALT1 through its paracas-
pase activity. This cleavage generates a LIM domain—only

(LMO)—containing fragment with oncogenic properties in
vitro and in vivo.

2.2. Numeric Chromosomal Aberration: Trisomies and Dele-
tions. Other cytogenetic alterations include trisomies 3, 12,
and/or 18, which are present as a sole abnormality in 22% of
the cases, but they are often associated with one of the four
main translocations described above [19].

Taji et al. detected trisomy 3 as the most common aberra-
tion in gastrointestinal MALT lymphomas with a frequency
of up to 35% [43]. Partial trisomies of chromosomes 3 and
18 also have been observed, as published by Krugmann et al.
[44]. In contrast, Ott et al. reported an incidence of only
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20% trisomy 3 in low-grade MALT lymphoma and an even
lower rate in high-grade ones [26]. The genetic mechanism
by which trisomy 3 may contribute to lymphomagenesis
has not yet been experimentally addressed. However, an
increased gene dosage effect resulting from higher copy
numbers of genes relevant to lymphoma development is
likely to explain the biological consequences underlying
chromosomal trisomies. Several promising candidate genes
are located on chromosome 3 and have been implicated in
lymphomagenesis, such as the protooncogene BCL6 and the
transcription factor FOXP1 [24]. One of our previous studies
describes CCR4—a chemokine receptor genomically located
on chromosome 3 (3p24)—highly expressed in trisomy 3 +
MALT lymphoma whereas transcripts for this chemokine
receptor were missing in trisomy 3−MALT lymphomas [45].

Apart from the typical chromosomal translocations,
TNFAIP3 (A20) has been identified as frequently deleted
in ocular adnexal MALT lymphoma as detected by array
comparative genomic hybridization [46–48]. As an impor-
tant player in the NF-𝜅B pathway by various mechanisms,
TNFAIP3 acts as a tumor suppressor gene in various
lymphoma subtypes. In ocular adnexal MALT lymphoma,
complete TNFAIP3 inactivation is associated with poor
lymphoma-free survival [46, 49].TNFAIP3 deletion occurred
in MALT lymphoma of the ocular adnexa (19%), salivary
gland (8%), thyroid (11%), and liver (0.5%), but not, or at
almost undetectable frequencies, in the lung, stomach, and
skin [46, 50]. However, TNFAIP3 inactivation alone is not
sufficient for malignant transformation but nevertheless may
represent a promising future therapeutic target [51].

2.3. Somatic Mutations. To our knowledge, the number of
studies investigating somatic mutations in MALT lymphoma
is low and a whole genome sequencing approach has not yet
been done. Our group reported somatic missense mutations
in PIM1 and cMyc in 46% and 30% of MALT lymphomas
(gastric and extragastric origin) and in 30% and 41% of trans-
formed MALT lymphomas and 72% of primary cutaneous
marginal zone B cell lymphomas (PCMZL) [52], considered
as integral part of MALT lymphomas [53, 54]. Du et al.
[55] detected missense and frameshift mutations in p53 in
20.8% of MALT lymphoma and 30% of transformed MALT
lymphoma (both mainly of gastric origin). Mutation analysis
of NF-𝜅B signal pathway-related genes—TNFAIP3, Card11,
CD79B, and Myd88, known to be frequently mutated in
aggressive lymphomas [56–59]—demonstrated missense or
frameshift mutations in 6% of MALT lymphoma cases in
the Myd88 locus and in 28.6% of ocular adnexal MALT
lymphomas mutations in the TNFAIP3 locus [49, 60, 61].

Liu et al. [62] reported that Card11 and CD79B were not
affected in their cohort of ocular adnexal MALT lymphomas.

These genetic lesions are not restricted to MALT lym-
phoma. Rinaldi et al. performed a comprehensive analysis
of genomic DNA copy number changes in more than 200
samples of MZL and demonstrated a distinct distribution of
lesions in different subtypes (MALT lymphoma, nodal MZL,
and splenic MZL). Whereas 3q and 18q gains were common
in all three subtypes, del(6q23)(TNFAIP3) could be used for

differentiation between MALT lymphoma and splenic MZL
[63].

To investigate the role of TNFAIP3 as tumor suppressor in
MZL, Novak et al. analyzed 32 MZL including 11 extragastric
MALT lymphomas by SNP-array [64]. They were able to
identify somatic mutations in four of 11 extragastric MALT
lymphomas, as well as a genetic loss of TNFAIP3 in two of the
four somatically mutated MALT lymphomas. Interestingly,
no PRDM1 (Blimp1) deletions were detected in samples with
TNFAIP3 deletion (Table 1).

3. The Connection to Long-Lasting
Chronic Infection

Gastric MALT lymphoma is strongly associated with the
chronic infectionH. pylori, which is an association that satis-
fies Koch’s postulates for an etiologic agent [65]. Other infec-
tious associations, though not entirely fulfilling these criteria,
have been reported for Borrelia burgdorferi (skin) [66],
Campylobacter jejuni (intestine) [67], and the hepatitis C
virus (splenic marginal zone lymphoma) [68]. Other chronic
inflammatory reactions or autoimmune diseases have been
further associatedwithMALT lymphoma, including Sjogren’s
disease [69]. In ocular adnexal MALT lymphoma especially,
representing 5–15% of all extranodal lymphomas, the occur-
rence of Chlamydia psittaci is of special interest. Ferreri et
al. [70] demonstrated an association between ocular adnexal
MALT lymphoma and infection with Chlamydia psittaci in
an Italian patient cohort. The presence of Chlamydia psittaci
DNA was detected in 80% of lymphoma samples. More-
over, bacterial DNA was found in 43% of peripheral blood
mononuclear cells from patients, but not in healthy donors.
More than 80% of these patients achieved lymphoma after
Chlamydia psittaciwas successfully eradicated by doxycycline
administration [71]. In a large study of 142 cases, Chanudet et
al. [72] described an overall prevalence (22%) of Chlamydia
psittaci infection in ocular adnexal MALT lymphoma, but
with marked geographic variation, the highest incidences
being in Germany (47%), the East Coast of the United States
(35%), and Netherlands (29%). In our Austrian study, we
detected Chlamydia psittaci in 7 out of 13 samples of ocular
adnexal MALT lymphoma, in contrast to only one of 17
gastrointestinal specimens tested positive [73]. A subsequent
study by our group in 47 nongastrointestinal MALT lym-
phomas demonstrated 13 (28%) to be positive for Chlamydia
psittaci DNA compared to only 4 (11%) of 37 nonmalignant
control samples (𝑃 = 0.09). Chlamydia psittaci was detected
at variable frequencies in MALT lymphomas of different sites
with up to 100% frequency in pulmonaryMALT lymphomas,
suggesting a possible causal involvement of this pathogen [74]
in MALT lymphomagenesis.

A role for antigen-driven clonal expansion of the lym-
phoma cells is shown in the evidence of an ongoing somatic
hypermutation in the Ig V genes [75]. The involvement of
antigens is further supported by evidence of clonal evolution
within the tumor, suggesting selective pressure to increase
affinity of the immunoglobulin for antigens [76]. The early
stages of gastric lymphoma development may be facilitated
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Table 1: Genetic alterations in MALT lymphomas.

Name Type Affected gene NF-𝜅B
activation Subtype of MALT lymphoma mainly involved

t(1;14)(p22,q32) Translocation BCL10 Yes Stomach, lung, and skin
t(11;18)(q21,q21) Translocation BIRC2,MALT1 Yes Pulmonary, gastric
t(14;18)(q32,q21) Translocation MALT1 Yes Ocular adnexa, orbit, skin, and salivary glands
t(3;14)(p14.1,q32) Translocation FOXP1 No

Trisomy 3 Trisomy FOXP1∗
BCL6∗

No
No Gastrointestinal

Trisomy 12 Trisomy Unknown No
Trisomy 18 Trisomy Unknown No

TNFAIP3 Deletion TNFAIP3 Yes Ocular adnexal, salivary gland, thyroid, and
liver

PIM1 Mutation PIM1 No Gastric, extragastric
cMyc Mutation cMyc No Gastric, extragastric
P53 Mutation P53 No
Myd88 Mutation Myd88 Yes Ocular adnexal
P16 Hypermethylation P16 No
P57 Hypermethylation P57 No
TNFAIP3 Hypermethylation TNFAIP3 No Ocular adnexal, salivary, and thyroidal glands
∗The two potentially affected genes.

by antigen-driven T cells specific for the H. pylori organism
[77] and the eradication of the infection causing a cure rate
up to 75% is consistent with this postulate [78]. However,
even less is known about the role of the host immune
response, as demonstrated by the fact that only a minority
of infected patients develop gastric MALT lymphoma [79].
MALT lymphomagenesis may also correlate with different
cytokines and HLA polymorphisms [80, 81].

4. Pathogenesis of MALT Lymphomas

The evolution of gastric MALT lymphoma is a multistage
process starting with the infection of H. pylori resulting
in the recruitment of B and T cells and other inflamma-
tory cells to the gastric mucosa. The infiltrated B cells are
stimulated by the H. pylori-specific T cells and undergo
malignant transformation due to the acquisition of genetic
abnormalities. One example is the association between theH.
pylori infection and gastric MALT lymphoma, in which H.
pylori stimulates tumor cell growth when coincubated with
helper T cells [77]. Epithelial cells are activated by chronic
infectious stimuli, expressing high levels of HLA-DR and
costimulatory molecules, including CD80, on their surface.
These cells may be able to present antigens along with HLA
molecules to T cells. CD40 ligandmolecules expressed on the
activated T cells can react with the CD40molecule on B cells,
upregulating B cell expression of CD80. This surface protein
can react with the CD28 molecule on CD4 T cells, strongly
activating the latter. Activated CD4 T cells can stimulate
B cells through CD40L-CD40 interaction, in conjunction
with the action of various cytokines and chemokines. This
interaction among epithelial cells, T cells, and B cells may
allow these cells to survive cooperatively in lymphoepithelial

lesions and not to undergo apoptosis [82]. Lymphoepithelial
lesions (LELs) are thought to be the origin of lymphomas [83].
The transition frompolyclonal to amonoclonal lesion is facil-
itated by chronic stimulationwith exogenous or autoantigens,
thereby increasing the frequency of their transformation [84–
86]. MALT lymphoma with H. pylori-dependent alterations
like trisomies 3, 12, or 18 can progress and become H. pylori-
independent. Eventually it may transform into high-grade
tumors following the mechanism described above. Complete
inactivation of the tumor suppressor gene P53, homologous
deletion of the P16 gene, and chromosomal translocation of
cMYC and BCL6 are associated with the transformation of
MALT lymphoma [55, 87–90]. MALT lymphomas, devoid of
t(11;18)(q21;q21) with an amplification at 3q27, are prone to
high-grade transformation [91]. On the other hand, MALT
lymphomas with t(11;18)(q21;q21) are H. pylori-independent
but rarely transform to aggressive lymphoma [7].

5. MALT Lymphomas Are Targeted by
the Aberrant Somatic Hypermutation

Aberrant somatic hypermutation (ASHM), which was first
described in DLBCL, has been identified as a crucial con-
tributor to the development of lymphoid neoplasm. In
DLBCL, the physiological process of somatic hypermutation,
occurring in the rearranged V genes to generate antibody
diversity of germinal-centre B cells and of all germinal-
center-derived B cell tumors [92, 93], aberrantly targets
the 5 sequences of several protooncogenes relevant to
lymphomagenesis, including PIM1, PAX5, RhoH/TTF, and
cMYC. This phenomenon occurs in >50% of DLBCL but is
rare in indolent lymphomas [94–97]. The pathogenesis of
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most B cell non-Hodgkin lymphomas (B NHL) is associ-
ated with distinct genetic lesions, including chromosomal
translocations and ASHM, which arise frommistakes during
class switch recombination (CSR) and SHM occurring in
the germinal centre [92, 93, 98, 99]. Activation-induced
cytidine deaminase (AID) is an enzyme required for SHM
and CSR, andmistargeting of AID to known protooncogenes
linked to B cell tumorigenesis in germinal-center B cells
combined with a breakdown of protective high fidelity repair
mechanism has been shown to be a principal contributor to
the pathogenesis of B NHL [98, 99]. Our group described
that in 13 (76.5%) of 17 cases of MALT lymphomas and
all 17 (100%) cases of extranodal DLBCL—still exhibiting
a low-grade MALT lymphoma component (the so-called
transformed MALT lymphoma)—were targeted by ASHM.
Expression levels of AID were associated with the muta-
tional load caused by ASHM [54]. Additionally, 8 of 11
PCMZL (72.7%)—considered as part of the group of MALT
lymphomas [53]—displayed molecular features typical for
ASHM [51]. Interestingly,H. pylori infection upregulates AID
expression via NF-𝜅B resulting in gastric cells in vitro and
in vivo. The H. pylori-mediated AID upregulation causes
an accumulation of p53 mutation in vitro [100]. Thus, it
might be speculated that H. pylori infection might cause
an upregulation of AID in B cells and that mistargeting of
this enzyme to protooncogenes induces genetic alterations
relevant to MALT lymphomagenesis.

6. BCR Signaling in MALT Lymphoma

The BCR signaling pathway, physiologically involved in the
development and differentiation of normal B cells, has been
identified as playing a crucial role in lymphomagenesis and
acting as an important target for therapeutic interventions
[101]. The activation of this pathway is driven by multiple
factors, including chronic exposure to antigens likeH. pylori.
Together with the chronic inflammatory status caused by H.
pylori, antigen drive/stimulation may contribute to MALT
lymphomagenesis; however, a direct connection between the
BCR pathway and H. pylori has not been identified [102].
Nonetheless, early stage H. pylori-positive MALT lymphoma
can be cured by eradicating the H. pylori infection alone,
supporting a causative role [103].

The downstream target of the BCR signaling, NF-𝜅B, can
be activated independent of BCR signaling by the MALT1
fusion protein and BCL10 overexpression [101]. MALT1
fusion protein is a result of t(11;18)(q21;q21), occurring in
more advanced cases of MALT lymphoma [29]. ManyMALT
lymphomas requireMALT1 forNF-𝜅B activation.The impor-
tance of MALT1 protease activity was shown recently by the
dependency of NF-𝜅B-addicted B cell lymphomas on this
proteolytic activity.Therapeutic targeting of MALT1 protease
activitymight therefore become a promising approach for the
treatment of MALT lymphomas and other B cell lymphomas
associated with deregulated NF-𝜅B signaling [104]. Conse-
quently, MALT lymphoma, harboring these translocations,
shows impaired response to antibiotic eradication therapy
[105].

7. Chemokine Receptors in MALT Lymphomas

Chemokines, also known as proinflammatory chemotactic
cytokines, represent a large superfamily of peptides with
diverse biological functions. Chemokines interact with a
target cell by binding to the chemokine receptors. There
exist numerous chemokines and chemokine receptors, but no
single chemokine is assigned to a single receptor. Chemokine
signaling can coordinate cell movement during inflamma-
tion, as well as the homeostatic transport of hematopoietic
stem cells, lymphocytes, and dendritic cells [106–108]. The
homeostatic transport of precursor B cells to secondary
lymphoid tissue is essential for B cell development. CCR6,
CCR7, CXCR3, CXCR4, and CXCR5 play a crucial role in this
homing process; therefore these five chemokine receptors are
called B cell homeostatic chemokine receptors [109–111]. The
group of activation dependent chemokine receptors, which
are expressed on effector leukocytes (including activated
effector/memory T cells), plays an essential role in inflamma-
tion processes responsible for migration towards chemokines
produced by inflamed cells [106]. Our expression analy-
sis of 19 well-characterized chemokine receptors in MALT
lymphomas demonstrated a distinct signature of chemokine
receptor expression in extragastric MALT lymphomas com-
pared to gastric MALT lymphomas. In comparing gastric to
extragastric MALT lymphomas, the upregulation of CXCR1
and CXCR2 accompanied by downregulation of CCR8 and
CX3CR1 and loss of XCR1 expression in extragastric MALT
lymphomas appear to be key determinants for the site of
origin of MALT lymphomagenesis [45]. In our second study
on the chemokine receptor inMALT lymphomas, the CXCR4
expression was missing in gastric MALT lymphomas or gas-
tric extranodalDLBCL compared to nodal lymphomas, nodal
MZL, and nodal DLBCL, which exhibited a strong expression
[112] indicating that CXCR4 expression is associated with
nodalmanifestation.Additionally, we found thatCXCL12 and
CXCR7—a CXCRL12 receptor—were upregulated during the
progression of gastric MALT lymphomas to gastric eDLBCL
[112], suggesting at least in part an implication of this
signaling pathway in high-grade transformation of gastric
MALT lymphomas.

8. Conclusion

MALT lymphomas represent a heterogeneous group of lym-
phoid neoplasms with a large number of different genetic
alterations depending on the site of origin [15–19]. Inter-
estingly, most of the genetic alterations affect NF-𝜅B signal
pathway-related genes causing constitutive activation of the
NF-𝜅B pathway [33, 34, 36–38]. This observation is substan-
tiated by the fact that treatment with bortezomib [113, 114]—
a proteasome inhibitor with inhibitory effects on the NF-
𝜅B signal pathway [115]—induces complete remissions in a
substantial proportion of MALT lymphoma patients. To our
knowledge, activated NF-𝜅B is also found in MALT lym-
phoma patients without any translocation or mutation in any
of the NF-𝜅B signal pathway-related genes, so more studies
on genetic alterations with a whole genome/transcriptome
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approach are needed to clarify the molecular mechanism of
NF-𝜅B activation.

The development of MALT lymphoma is strongly asso-
ciated with chronic infection by pathogens or autoantigens
[65, 66, 70–72]. Eradication of the bacterial pathogen by
antibiotics causes remission in the majority of MALT lym-
phomapatients [71, 78].However, fromour perspective,more
refined studies on bacterial and viral pathogens using a next
generation sequencing approach and additionally analyzing
the potentially restricted usage of variable genes of the
immunoglobulin geneswill further clarify the causal relation-
ship of MALT lymphomagenesis and chronic infectious or
inflammatory processes.
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