147,556 research outputs found

    Complete intersection singularities of splice type as universal abelian covers

    Get PDF
    It has long been known that every quasi-homogeneous normal complex surface singularity with Q-homology sphere link has universal abelian cover a Brieskorn complete intersection singularity. We describe a broad generalization: First, one has a class of complete intersection normal complex surface singularities called "splice type singularities", which generalize Brieskorn complete intersections. Second, these arise as universal abelian covers of a class of normal surface singularities with Q-homology sphere links, called "splice-quotient singularities". According to the Main Theorem, splice-quotients realize a large portion of the possible topologies of singularities with Q-homology sphere links. As quotients of complete intersections, they are necessarily Q-Gorenstein, and many Q-Gorenstein singularities with Q-homology sphere links are of this type. We conjecture that rational singularities and minimally elliptic singularities with Q-homology sphere links are splice-quotients. A recent preprint of T Okuma presents confirmation of this conjecture.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol9/paper17.abs.htm

    Labor Mobilization in the National Socialist New Order

    Get PDF

    On the intersection of free subgroups in free products of groups

    Get PDF
    Let (G_i | i in I) be a family of groups, let F be a free group, and let G = F *(*I G_i), the free product of F and all the G_i. Let FF denote the set of all finitely generated subgroups H of G which have the property that, for each g in G and each i in I, H \cap G_i^{g} = {1}. By the Kurosh Subgroup Theorem, every element of FF is a free group. For each free group H, the reduced rank of H is defined as r(H) = max{rank(H) -1, 0} in \naturals \cup {\infty} \subseteq [0,\infty]. To avoid the vacuous case, we make the additional assumption that FF contains a non-cyclic group, and we define sigma := sup{r(H\cap K)/(r(H)r(K)) : H, K in FF and r(H)r(K) \ne 0}, sigma in [1,\infty]. We are interested in precise bounds for sigma. In the special case where I is empty, Hanna Neumann proved that sigma in [1,2], and conjectured that sigma = 1; almost fifty years later, this interval has not been reduced. With the understanding that \infty/(\infty -2) = 1, we define theta := max{|L|/(|L|-2) : L is a subgroup of G and |L| > 2}, theta in [1,3]. Generalizing Hanna Neumann's theorem, we prove that sigma in [theta, 2 theta], and, moreover, sigma = 2 theta if G has 2-torsion. Since sigma is finite, FF is closed under finite intersections. Generalizing Hanna Neumann's conjecture, we conjecture that sigma = theta whenever G does not have 2-torsion.Comment: 28 pages, no figure

    Computational Problems in Metric Fixed Point Theory and their Weihrauch Degrees

    Full text link
    We study the computational difficulty of the problem of finding fixed points of nonexpansive mappings in uniformly convex Banach spaces. We show that the fixed point sets of computable nonexpansive self-maps of a nonempty, computably weakly closed, convex and bounded subset of a computable real Hilbert space are precisely the nonempty, co-r.e. weakly closed, convex subsets of the domain. A uniform version of this result allows us to determine the Weihrauch degree of the Browder-Goehde-Kirk theorem in computable real Hilbert space: it is equivalent to a closed choice principle, which receives as input a closed, convex and bounded set via negative information in the weak topology and outputs a point in the set, represented in the strong topology. While in finite dimensional uniformly convex Banach spaces, computable nonexpansive mappings always have computable fixed points, on the unit ball in infinite-dimensional separable Hilbert space the Browder-Goehde-Kirk theorem becomes Weihrauch-equivalent to the limit operator, and on the Hilbert cube it is equivalent to Weak Koenig's Lemma. In particular, computable nonexpansive mappings may not have any computable fixed points in infinite dimension. We also study the computational difficulty of the problem of finding rates of convergence for a large class of fixed point iterations, which generalise both Halpern- and Mann-iterations, and prove that the problem of finding rates of convergence already on the unit interval is equivalent to the limit operator.Comment: 44 page

    Paul\u27s Use of Authority and Persuasion in the Corinthian Letters

    Get PDF
    corecore