10,489 research outputs found

    On the intersection of free subgroups in free products of groups

    Get PDF
    Let (G_i | i in I) be a family of groups, let F be a free group, and let G = F *(*I G_i), the free product of F and all the G_i. Let FF denote the set of all finitely generated subgroups H of G which have the property that, for each g in G and each i in I, H \cap G_i^{g} = {1}. By the Kurosh Subgroup Theorem, every element of FF is a free group. For each free group H, the reduced rank of H is defined as r(H) = max{rank(H) -1, 0} in \naturals \cup {\infty} \subseteq [0,\infty]. To avoid the vacuous case, we make the additional assumption that FF contains a non-cyclic group, and we define sigma := sup{r(H\cap K)/(r(H)r(K)) : H, K in FF and r(H)r(K) \ne 0}, sigma in [1,\infty]. We are interested in precise bounds for sigma. In the special case where I is empty, Hanna Neumann proved that sigma in [1,2], and conjectured that sigma = 1; almost fifty years later, this interval has not been reduced. With the understanding that \infty/(\infty -2) = 1, we define theta := max{|L|/(|L|-2) : L is a subgroup of G and |L| > 2}, theta in [1,3]. Generalizing Hanna Neumann's theorem, we prove that sigma in [theta, 2 theta], and, moreover, sigma = 2 theta if G has 2-torsion. Since sigma is finite, FF is closed under finite intersections. Generalizing Hanna Neumann's conjecture, we conjecture that sigma = theta whenever G does not have 2-torsion.Comment: 28 pages, no figure

    Magnetoconductance switching in an array of oval quantum dots

    Full text link
    Employing oval shaped quantum billiards connected by quantum wires as the building blocks of a linear quantum dot array, we calculate the ballistic magnetoconductance in the linear response regime. Optimizing the geometry of the billiards, we aim at a maximal finite- over zero-field ratio of the magnetoconductance. This switching effect arises from a relative phase change of scattering states in the oval quantum dot through the applied magnetic field, which lifts a suppression of the transmission characteristic for a certain range of geometry parameters. It is shown that a sustainable switching ratio is reached for a very low field strength, which is multiplied by connecting only a second dot to the single one. The impact of disorder is addressed in the form of remote impurity scattering, which poses a temperature dependent lower bound for the switching ratio, showing that this effect should be readily observable in experiments.Comment: 11 pages, 8 figure

    Classical, quantum and total correlations

    Get PDF
    We discuss the problem of separating consistently the total correlations in a bipartite quantum state into a quantum and a purely classical part. A measure of classical correlations is proposed and its properties are explored.Comment: 10 pages, 3 figure

    L-Convex Polyominoes are Recognizable in Real Time by 2D Cellular Automata

    Full text link
    A polyomino is said to be L-convex if any two of its cells are connected by a 4-connected inner path that changes direction at most once. The 2-dimensional language representing such polyominoes has been recently proved to be recognizable by tiling systems by S. Brocchi, A. Frosini, R. Pinzani and S. Rinaldi. In an attempt to compare recognition power of tiling systems and cellular automata, we have proved that this language can be recognized by 2-dimensional cellular automata working on the von Neumann neighborhood in real time. Although the construction uses a characterization of L-convex polyominoes that is similar to the one used for tiling systems, the real time constraint which has no equivalent in terms of tilings requires the use of techniques that are specific to cellular automata

    Berry phase, topology, and diabolicity in quantum nano-magnets

    Full text link
    A topological theory of the diabolical points (degeneracies) of quantum magnets is presented. Diabolical points are characterized by their diabolicity index, for which topological sum rules are derived. The paradox of the the missing diabolical points for Fe8 molecular magnets is clarified. A new method is also developed to provide a simple interpretation, in terms of destructive interferences due to the Berry phase, of the complete set of diabolical points found in biaxial systems such as Fe8.Comment: 4 pages, 3 figure

    Is Communication Complexity Physical?

    Full text link
    Recently, Brassard et. al. conjectured that the fact that the maximal possible correlations between two non-local parties are the quantum-mechanical ones is linked to a reasonable restriction on communication complexity. We provide further support for the conjecture in the multipartite case. We show that any multipartite communication complexity problem could be reduced to triviality, had Nature been more non-local than quantum-mechanics by a quite small gap for any number of parties. Intriguingly, the multipartite nonlocal-box that we use to show the result corresponds to the generalized Bell inequality that manifests maximal violation in respect to a local hidden-variable theory

    Universal Uncertainty Principle in the Measurement Operator Formalism

    Full text link
    Heisenberg's uncertainty principle has been understood to set a limitation on measurements; however, the long-standing mathematical formulation established by Heisenberg, Kennard, and Robertson does not allow such an interpretation. Recently, a new relation was found to give a universally valid relation between noise and disturbance in general quantum measurements, and it has become clear that the new relation plays a role of the first principle to derive various quantum limits on measurement and information processing in a unified treatment. This paper examines the above development on the noise-disturbance uncertainty principle in the model-independent approach based on the measurement operator formalism, which is widely accepted to describe a class of generalized measurements in the field of quantum information. We obtain explicit formulas for the noise and disturbance of measurements given by the measurement operators, and show that projective measurements do not satisfy the Heisenberg-type noise-disturbance relation that is typical in the gamma-ray microscope thought experiments. We also show that the disturbance on a Pauli operator of a projective measurement of another Pauli operator constantly equals the square root of 2, and examine how this measurement violates the Heisenberg-type relation but satisfies the new noise-disturbance relation.Comment: 11 pages. Based on the author's invited talk at the 9th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'2005), Besancon, France, May 2-6, 200

    A photoelectron spectroscopy study of the electronic structure evolution in CuInSe2-related compounds at changing copper content

    Get PDF
    Evolution of the valence-band structure at gradually increasing copper content has been analysed by x-ray photoelectron spectroscopy (XPS) in In2Se3, CuIn5Se8, CuIn3Se5, and CuInSe2 single crystals. A comparison of these spectra with calculated total and angular-momentum resolved density-of-states (DOS) revealed the main trends of this evolution. The formation of the theoretically predicted gap between the bonding and non-bonding states has been observed in both experimental XPS spectra and theoretical DOS

    Search for weak M1 transitions in 48^{48}Ca with inelastic proton scattering

    Full text link
    The spinflip M1 resonance in the doubly magic nucleus 48^{48}Ca, dominated by a single transition, serves as a reference case for the quenching of spin-isospin modes in nuclei. The aim of the present work is a search for weak M1 transitions in 48^{48}Ca with a high-resolution (p,p') experiment at 295 MeV and forward angles including 0 degree and a comparison to results from a similar study using backward-angle electron scattering at low momentum transfers in order to estimate their contribution to the total B(M1) strength. M1 cross sections of individual peaks in the spectra are deduced with a multipole decomposition analysis. The corresponding reduced B(M1) transition strengths are extracted following the approach outlined in J. Birkhan et al., Phys. Rev. C 93, 041302(R) (2016). In total, 29 peaks containing a M1 contribution are found in the excitation energy region 7 - 13 MeV. The resulting B(M1) strength distribution compares well to the electron scattering results considering different factors limiting the sensitivity in both experiments and the enhanced importance of mechanisms breaking the proportionality of nuclear cross sections and electromagnetic matrix elements for weak transitions as studied here. The total strength of 1.19(6) μN2\mu_N^2 deduced assuming a non-quenched isoscalar part of the (p,p') cross sections agrees with the (e,e') result of 1.21(13) μN2\mu_N^2. A binwise analysis above 10 MeV provides an upper limit of 1.62(23) μN2\mu_N^2. The present results confirm that weak transitions contribute about 25% to the total B(M1) strength in 48^{48}Ca and the quenching factors of GT and spin-M1 strength are comparable in fp-shell nuclei. Thus, the role of of meson exchange currents seems to be neglible, in contrast to sd-shell nuclei.Comment: 11 pages, 9 figures, revised analysis with oxygen contamination remove
    corecore