35 research outputs found

    Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction

    Get PDF
    Ubiquitin-immunoreactive neuronal inclusions composed of TAR DNA binding protein of 43 kDa (TDP-43) are a major pathological feature of frontotemporal lobar degeneration (FTLD-TDP). In vivo studies with TDP-43 knockout mice have suggested that TDP-43 plays a critical, although undefined role in development. In the current report, we generated transgenic mice that conditionally express wild-type human TDP-43 (hTDP-43) in the forebrain and established a paradigm to examine the sensitivity of neurons to TDP-43 overexpression at different developmental stages. Continuous TDP-43 expression during early neuronal development produced a complex phenotype, including aggregation of phospho-TDP-43, increased ubiquitin immunoreactivity, mitochondrial abnormalities, neurodegeneration and early lethality. In contrast, later induction of hTDP-43 in the forebrain of weaned mice prevented early death and mitochondrial abnormalities while yielding salient features of FTLD-TDP, including progressive neurodegeneration and ubiquitinated, phospho-TDP-43 neuronal cytoplasmic inclusions. These results suggest that neurons in the developing forebrain are extremely sensitive to TDP-43 overexpression and that timing of TDP-43 overexpression in transgenic mice must be considered when distinguishing normal roles of TDP-43, particularly as they relate to development, from its pathogenic role in FTLD-TDP and other TDP-43 proteinopathies. Finally, our adult induction of hTDP-43 strategy provides a mouse model that develops critical pathological features that are directly relevant for human TDP-43 proteinopathies

    LATE-NC staging in routine neuropathologic diagnosis : an update

    Get PDF
    An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.Peer reviewe

    Mechanism of PTEN binding to model membranes

    Get PDF
    PTEN (phosphatase and tensin homolog deleted on chromosome ten) is a potent tumor suppressor. PTEN’s tumor suppressor action is rooted in its phosphatase function on the lipid substrate phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P3). PTEN’s enzymatic activity is specific for the third position of the inositol headgroup. PI(3,4,5)P3 is a second messenger that is a part of the PI3K-Akt pathway, and its dysregulation leads to constitutively activated AKT. The result of AKT activation is cell cycle progression, motility, cell growth, and proliferation, and consequently, overaction leads to neoplastic growth and tumorigenesis. PTEN antagonizes this pathway by regulating PI(3,4,5)P3 population through its phosphatase activity which produces the lipid PI(4,5)P2 (phosphatidylinositol-(4,5)-bisphosphate). A result of PTEN’s function is that its activity must be localized at the PM (plasma membrane) since this is where its substrate resides. Additionally, the mole percent of the phosphoinositide family of lipids is small.From highest percent composition to lowest the phosphoinositide species in the PM rank as PI(4,5)P2 (~2%), PI(4)P (~1%), and PI(3,4,5)P3 (~0.02%). For PTEN to turn over its substrate, it must first translocate from the cytosol to the PM and then search through the plasma membrane for this rare but high in demand lipid. This is at the center of the scarcity paradox. This work explores how PTEN may overcome this paradox by using its multiple lipid binding domains to interact with multiple lipid partners to efficiently localize it toward a region with a high probability of having PI(3,4,5)P3. This hypothesis is tested using two kinetic methodologies. First, we use pre- steady state stopped-flow spectrometry to determine the rates that govern PTEN-lipid binding. Second, we use single-molecule total internal reflectance fluorescence (smTIRF) microscopy to resolve the diffusion coefficients and dwell times of bound PTEN on SLBs supported lipid bilayers (SLBs). We test PTEN against various lipid compositions to determine how the bilayer structure in addition to the chemistry of the lipid influences the enzyme’s binding. These compositions include PI(4,5)P2, PI phosphatidylinositol (PI), phosphatidylserine (PS), PI(4,5)P2/PI and PI(4,5)P2/PS. In addition to this kinetic work, we will also present a novel model membrane platform that takes advantage of a microfluidic device to develop lateral lipid gradients in SLBs. This microfluidic platform, in the future, will allow for the investigation of the dynamic behavior of proteins interacting with lipids but with a bilayer that has a structure recapitulating polarized membranes like in chemotaxing cells
    corecore