272 research outputs found

    Invest to Save: Report and Recommendations of the NSF-DELOS Working Group on Digital Archiving and Preservation

    Get PDF
    Digital archiving and preservation are important areas for research and development, but there is no agreed upon set of priorities or coherent plan for research in this area. Research projects in this area tend to be small and driven by particular institutional problems or concerns. As a consequence, proposed solutions from experimental projects and prototypes tend not to scale to millions of digital objects, nor do the results from disparate projects readily build on each other. It is also unclear whether it is worthwhile to seek general solutions or whether different strategies are needed for different types of digital objects and collections. The lack of coordination in both research and development means that there are some areas where researchers are reinventing the wheel while other areas are neglected. Digital archiving and preservation is an area that will benefit from an exercise in analysis, priority setting, and planning for future research. The WG aims to survey current research activities, identify gaps, and develop a white paper proposing future research directions in the area of digital preservation. Some of the potential areas for research include repository architectures and inter-operability among digital archives; automated tools for capture, ingest, and normalization of digital objects; and harmonization of preservation formats and metadata. There can also be opportunities for development of commercial products in the areas of mass storage systems, repositories and repository management systems, and data management software and tools.

    Enhanced surface metallic density of states in icosahedral quasicrystals

    Get PDF
    Valence and core-level photoemission spectra show that cleaved i-Al-Pd-Mn quasicrystals have a pronounced metallic signature. Spectra from states above EF, populated by increasing the sample temperature, indicate the presence of a shallow pseudogap 0.09 eV above EF. The Al 2p line asymmetry, on the other hand, which indicates metallic behavior, decreases with increasing photoelectron escape depth. This implies a decreasing density of states at EF with increasing distance from the surface, consistent with indications that the density of states near EF in the bulk is reduced. Our results thus help to resolve the apparent contradiction between the theoretical predictions for a bulk pseudogap, and the clear metallic Fermi edges in photoemission

    Electronic structure of cubic gallium nitride films grown on GaAs

    Get PDF
    The composition, surface structure, and electronic structure of zinc blende–GaN films grown on GaAs (100) and (110) by plasma‐assisted molecular beam epitaxy were investigated by means of core and valence level photoemission. Angle‐resolved photoelectron spectra (photon energy 30–110 eV) exhibited emission from the Ga 3d and N 2s levels, as well as a clear peak structure in the valence band region. These peaks were found to shift with photon energy, indicative of direct transitions between occupied and unoccupied GaN bands. By using a free electron final band, we are able to derive the course of the bands along the Γ‐X and Γ‐K‐X directions of the Brillouin zone and to determine the energy of critical points at the X point. The relative energies of the Ga 3d and nitrogen 2s bands were also studied, and a small amount of dispersion was detected in the latter. The resulting band structure is discussed in relation to existing band structure calculations

    Introduction: diverging or converging dynamics? EU and US policies in North Africa - an introduction

    Get PDF
    According to a number of scholars of international relations, the transatlantic relationship is going through a very significant and possibly irreversible crisis. It is claimed that the different reactions of the United States and the European Union to both September 11th and the war in Iraq were the catalyst for a rift that had been deepening for some time, leading to competition between the two actors. The literature on the foreign policy of the US and the EU in the Middle East and North Africa also points to this rift in order to explain the seemingly contradictory policies that the two actors implement in the region, with the US being more forceful in its attempts to export democracy and in supporting Israel while the EU adopts a less confrontational attitude and is perceived to be more friendly to the Palestinians. This article, which introduces a special issue on the nature of US and EU foreign policies in North Africa, argues on the contrary that the transatlantic rift does not really exist. While there are certainly differences in discourse and policies, both the EU and the US share the same concerns and have similar strategic objectives in the region, leading the two actors towards cooperation and division of labour rather than confrontation

    Quantum-well states in ultrathin Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Ag(111) films were deposited at room temperature onto H-passivated Si(111)-(1x1) substrates, and subsequently annealed at 300 C. An abrupt non-reactive Ag/Si interface is formed, and very uniform non-strained Ag(111) films of 6-12 monolayers have been grown. Angle resolved photoemission spectroscopy has been used to study the valence band electronic properties of these films. Well-defined Ag sp quantum-well states (QWS) have been observed at discrete energies between 0.5-2eV below the Fermi level, and their dispersions have been measured along the GammaK, GammaMM'and GammaL symmetry directions. QWS show a parabolic bidimensional dispersion, with in-plane effective mass of 0.38-0.50mo, along the GammaK and GammaMM' directions, whereas no dispersion has been found along the GammaL direction, indicating the low-dimensional electronic character of these states. The binding energy dependence of the QWS as a function of Ag film thickness has been analyzed in the framework of the phase accumulation model. According to this model, a reflectivity of 70% has been estimated for the Ag-sp states at the Ag/H/Si(111)-(1x1) interface.Comment: 6 pages, 6 figures, submitted to Phys. Rev.

    Electronic properties and Fermi surface of Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Silver films were deposited at room temperature onto H-passivated Si(111) surfaces. Their electronic properties have been analyzed by angle-resolved photoelectron spectroscopy. Submonolayer films were semiconducting and the onset of metallization was found at a Ag coverage of ∌\sim0.6 monolayers. Two surface states were observed at Γˉ\bar{\Gamma}-point in the metallic films, with binding energies of 0.1 and 0.35 eV. By measurements of photoelectron angular distribution at the Fermi level in these films, a cross-sectional cut of the Fermi surface was obtained. The Fermi vector determined along different symmetry directions and the photoelectron lifetime of states at the Fermi level are quite close to those expected for Ag single crystal. In spite of this concordance, the Fermi surface reflects a sixfold symmetry rather than the threefold symmetry of Ag single crystal. This behavior was attributed to the fact that these Ag films are composed by two domains rotated 60o^o.Comment: 9 pages, 8 figures, submitted to Physical Review

    Formation of a stable deacagonal quasicrystalline Al-Pd-Mn surface layer

    Get PDF
    We report the in situ formation of an ordered equilibrium decagonal Al-Pd-Mn quasicrystal overlayer on the 5-fold symmetric surface of an icosahedral Al-Pd-Mn monograin. The decagonal structure of the epilayer is evidenced by x-ray photoelectron diffraction, low-energy electron diffraction and electron backscatter diffraction. This overlayer is also characterized by a reduced density of states near the Fermi edge as expected for quasicrystals. This is the first time that a millimeter-size surface of the stable decagonal Al-Pd-Mn is obtained, studied and compared to its icosahedral counterpart.Comment: Submitted to Phys. Ref. Lett. (18 July 2001

    Two-domains bulklike Fermi surface of Ag films deposited onto Si(111)-(7x7)

    Full text link
    Thick metallic silver films have been deposited onto Si(111)-(7x7) substrates at room temperature. Their electronic properties have been studied by using angle resolved photoelectron spectroscopy (ARPES). In addition to the electronic band dispersion along the high-symmetry directions, the Fermi surface topology of the grown films has been investigated. Using ARPES, the spectral weight distribution at the Fermi level throughout large portions of the reciprocal space has been determined at particular perpendicular electron-momentum values. Systematically, the contours of the Fermi surface of these films reflected a sixfold symmetry instead of the threefold symmetry of Ag single crystal. This loss of symmetry has been attributed to the fact that these films appear to be composed by two sets of domains rotated 60o^o from each other. Extra, photoemission features at the Fermi level were also detected, which have been attributed to the presence of surface states and \textit{sp}-quantum states. The dimensionality of the Fermi surface of these films has been analyzed studying the dependence of the Fermi surface contours with the incident photon energy. The behavior of these contours measured at particular points along the Ag Γ\GammaL high-symmetry direction puts forward the three-dimensional character of the electronic structure of the films investigated.Comment: 10 pages, 12 figures, submitted to Physical Review
    • 

    corecore