497 research outputs found
Learning to Live With Wolves: Community-based Conservation in the Blackfoot Valley of Montana
We built on the existing capacity of a nongovernmental organization called the Blackfoot Challenge to proactively address wolf (Canis lupus)-livestock conflicts in the Blackfoot Valley of Montana. Beginning in 2007, wolves started rapidly recolonizing the valley, raising concerns among livestock producers. We built on an existing program to mitigate conflicts associated with an expanding grizzly bear population and worked within the community to build a similar program to reduce wolf conflicts using an integrative, multi-method approach. Efforts to engage the community included one-on-one meetings, workshops, field tours, and regular group meetings as well as opportunities to participate in data collection and projects. Initial projects included permanent electric fencing of calving areas and livestock carcass removal to address the threat of grizzly bears and, later, wolves. Subsequently we used intensive livestock and wolf monitoring through range riders in an attempt to reduce the frequency of encounter rates among wolves and livestock. Although we cannot claim causation from our efforts, results are encouraging. Confirmed livestock losses to wolves from 2006-2015 have been 2.2 confirmed depredations per year across nearly 50 ranches on about 3,240 km2 that are annually grazed by 16,000-18,000 head of livestock. Fewer than three wolves per year have been removed (2.4 wolves per year) due to these depredations for the same period as the population increased from one confirmed pack to approximately twelve. Our collaborative approach and prior experience with grizzly bears was key in building a proactive program to help reduce conflict with wolves in a community adjusting to an increasing large carnivore presence over a short period
Emerging Roles for MicroRNAs in Perioperative Medicine
MicroRNAs (miRNAs) are small, non-protein-coding, single-stranded RNAs. They function as posttranscriptional regulators of gene expression by interacting with target mRNAs. This process prevents translation of target mRNAs into a functional protein. miRNAs are considered to be functionally involved in virtually all physiologic processes, including differentiation and proliferation, metabolism, hemostasis, apoptosis, and inflammation. Many of these functions have important implications for anesthesiology and critical care medicine. Studies indicate that miRNA expression levels can be used to predict the risk for eminent organ injury or sepsis. Pharmacologic approaches targeting miRNAs for the treatment of human diseases are currently being tested in clinical trials. The present review highlights the important biological functions of miRNAs and their usefulness as perioperative biomarkers and discusses the pharmacologic approaches that modulate miRNA functions for disease treatment. In addition, the authors discuss the pharmacologic interactions of miRNAs with currently used anesthetics and their potential to impact anesthetic toxicity and side effects
Analytical expression of the magneto-optical Kerr effect and Brillouin light scattering intensity arising from dynamic magnetization
Time-resolved magneto-optical Kerr effect (MOKE) and Brillouin light
scattering (BLS) spectroscopy are important techniques for the investigation of
magnetization dynamics. Within this article, we calculate analytically the MOKE
and BLS signals from prototypical spin-wave modes in the ferromagnetic layer.
The reliability of the analytical expressions is confirmed by optically exact
numerical calculations. Finally, we discuss the dependence of the MOKE and BLS
signals on the ferromagnetic layer thickness
Near-Equilibrium Dynamics of Crystalline Interfaces with Long-Range Interactions in 1+1 Dimensional Systems
The dynamics of a one-dimensional crystalline interface model with long-range
interactions is investigated. In the absence of randomness, the linear response
mobility decreases to zero when the temperature approaches the roughening
transition from above, in contrast to a finite jump at the critical point in
the Kosterlitz-Thouless (KT) transition. In the presence of substrate disorder,
there exists a phase transition into a low-temperature pinning phase with a
continuously varying dynamic exponent . The expressions for the non-linear
response mobility of a crystalline interface in both cases are also derived.Comment: 14 Pages, Revtex3.0, accepted to be published in Phys. Rev. E Rapid
Communicatio
An Update on Preclinical Research in Anesthetic-Induced Developmental Neurotoxicity in Nonhuman Primate and Rodent Models
Funding Information: Supported by NIH R01GM137213-01 to CDM.Peer reviewedPostprin
Magnetic Vortex Core Reversal by Excitation of Spin Waves
Micron-sized magnetic platelets in the flux closed vortex state are
characterized by an in-plane curling magnetization and a nanometer-sized
perpendicularly magnetized vortex core. Having the simplest non-trivial
configuration, these objects are of general interest to micromagnetics and may
offer new routes for spintronics applications. Essential progress in the
understanding of nonlinear vortex dynamics was achieved when low-field core
toggling by excitation of the gyrotropic eigenmode at sub-GHz frequencies was
established. At frequencies more than an order of magnitude higher vortex state
structures possess spin wave eigenmodes arising from the magneto-static
interaction. Here we demonstrate experimentally that the unidirectional vortex
core reversal process also occurs when such azimuthal modes are excited. These
results are confirmed by micromagnetic simulations which clearly show the
selection rules for this novel reversal mechanism. Our analysis reveals that
for spin wave excitation the concept of a critical velocity as the switching
condition has to be modified.Comment: Minor corrections and polishing of previous versio
Commensurability oscillations in the rf conductivity of unidirectional lateral superlattices: measurement of anisotropic conductivity by coplanar waveguide
We have measured the rf magnetoconductivity of unidirectional lateral
superlattices (ULSLs) by detecting the attenuation of microwave through a
coplanar waveguide placed on the surface. ULSL samples with the principal axis
of the modulation perpendicular (S_perp) and parallel (S_||) to the microwave
electric field are examined. For low microwave power, we observe expected
anisotropic behavior of the commensurability oscillations (CO), with CO in
samples S_perp and S_|| dominated by the diffusion and the collisional
contributions, respectively. Amplitude modulation of the Shubnikov-de Haas
oscillations is observed to be more prominent in sample S_||. The difference
between the two samples is washed out with the increase of the microwave power,
letting the diffusion contribution govern the CO in both samples. The failure
of the intended directional selectivity in the conductivity measured with high
microwave power is interpreted in terms of large-angle electron-phonon
scattering.Comment: 8 pages, 5 figure
The modulation of topoisomerase I-mediated DNA cleavage and the induction of DNA–topoisomerase I crosslinks by crotonaldehyde-derived DNA adducts
Crotonaldehyde is a representative α,β-unsaturated aldehyde endowed of mutagenic and carcinogenic properties related to its propensity to react with DNA. Cyclic crotonaldehyde-derived deoxyguanosine (CrA-PdG) adducts can undergo ring opening in duplex DNA to yield a highly reactive aldehydic moiety. Here, we demonstrate that site-specifically modified DNA oligonucleotides containing a single CrA-PdG adduct can form crosslinks with topoisomerase I (Top1), both directly and indirectly. Direct covalent complex formation between the CrA-PdG adduct and Top1 is detectable after reduction with sodium cyanoborohydride, which is consistent with the formation of a Schiff base between Top1 and the ring open aldehyde form of the adduct. In addition, we show that the CrA-PdG adduct alters the cleavage and religation activities of Top1. It suppresses Top1 cleavage complexes at the adduct site and induces both reversible and irreversible cleavage complexes adjacent to the CrA-PdG adduct. The formation of stable DNA–Top1 crosslinks and the induction of Top1 cleavage complexes by CrA-PdG are mutually exclusive. Lastly, we found that crotonaldehyde induces the formation of DNA–Top1 complexes in mammalian cells, which suggests a potential relationship between formation of DNA–Top1 crosslinks and the mutagenic and carcinogenic properties of crotonaldehyde
Current-induced cooling phenomenon in a two-dimensional electron gas under a magnetic field
We investigate the spatial distribution of temperature induced by a dc
current in a two-dimensional electron gas (2DEG) subjected to a perpendicular
magnetic field. We numerically calculate the distributions of the electrostatic
potential phi and the temperature T in a 2DEG enclosed in a square area
surrounded by insulated-adiabatic (top and bottom) and isopotential-isothermal
(left and right) boundaries (with phi_{left} < phi_{right} and T_{left}
=T_{right}), using a pair of nonlinear Poisson equations (for phi and T) that
fully take into account thermoelectric and thermomagnetic phenomena, including
the Hall, Nernst, Ettingshausen, and Righi-Leduc effects. We find that, in the
vicinity of the left-bottom corner, the temperature becomes lower than the
fixed boundary temperature, contrary to the naive expectation that the
temperature is raised by the prevalent Joule heating effect. The cooling is
attributed to the Ettingshausen effect at the bottom adiabatic boundary, which
pumps up the heat away from the bottom boundary. In order to keep the adiabatic
condition, downward temperature gradient, hence the cooled area, is developed
near the boundary, with the resulting thermal diffusion compensating the upward
heat current due to the Ettingshausen effect.Comment: 25 pages, 7 figure
- …