108 research outputs found

    Microtermolides A and B from Termite-Associated Streptomyces sp. and Structural Revision of Vinylamycin

    Get PDF
    Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re-examination of the structure originally proposed for vinylamycin (3). Based on a comparison of predicted and experimental 1^1H and 13^{13}C NMR chemical shifts, we propose that vinylamycin’s structure be revised from 3 to 4

    Dynamic lattice distortions driven by surface trapping in semiconductor nanocrystals

    Full text link
    Nonradiative processes limit optoelectronic functionality of nanocrystals and curb their device performance. Nevertheless, the dynamic structural origins of nonradiative relaxations in nanocrystals are not understood. Here, femtosecond electron diffraction measurements corroborated by atomistic simulations uncover transient lattice deformations accompanying radiationless electronic processes in semiconductor nanocrystals. Investigation of the excitation energy dependence shows that hot carriers created by a photon energy considerably larger than the bandgap induce structural distortions at nanocrystal surfaces on few picosecond timescales associated with the localization of trapped holes. On the other hand, carriers created by a photon energy close to the bandgap result in transient lattice heating that occurs on a much longer 200 ps timescale, governed by an Auger heating mechanism. Elucidation of the structural deformations associated with the surface trapping of hot holes provides atomic-scale insights into the mechanisms deteriorating optoelectronic performance and a pathway towards minimizing these losses in nanocrystal devices.Comment: 17 pages, 4 figure

    NT2 Derived Neuronal and Astrocytic Network Signalling

    Get PDF
    A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As) exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality

    Astrocytic Ca2+ Waves Guide CNS Growth Cones to Remote Regions of Neuronal Activity

    Get PDF
    Activity plays a critical role in network formation during developmental, experience-dependent, and injury related remodeling. Here we report a mechanism by which axon trajectory can be altered in response to remote neuronal activity. Using photoconductive stimulation to trigger high frequency action potentials in rat hippocampal neurons in vitro, we find that activity functions as an attractive cue for growth cones in the local environment. The underlying guidance mechanism involves astrocyte Ca2+ waves, as the connexin-43 antagonist carbenoxolone abolishes the attraction when activity is initiated at a distance greater than 120 µm. The asymmetric growth cone filopodia extension that precedes turning can be blocked with CNQX (10 µM), but not with the ATP and adenosine receptor antagonists suramin (100 µM) and alloxazine (4 µM), suggesting non-NMDA glutamate receptors on the growth cone mediate the interaction with astrocytes. These results define a potential long-range signalling pathway for activity-dependent axon guidance in which growth cones turn towards directional, temporally coordinated astrocyte Ca2+ waves that are triggered by neuronal activity. To assess the viability of the guidance effect in an injury paradigm, we performed the assay in the presence of conditioned media from lipopolysaccharide (LPS) activated purified microglial cultures, as well as directly activating the glia present in our co-cultures. Growth cone attraction was not inhibited under these conditions, suggesting this mechanism could be used to guide regeneration following axonal injury

    Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography, From Training Through Independent Practice.

    Get PDF
    BACKGROUND & AIMS: It is unclear whether participation in competency-based fellowship programs for endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) results in high-quality care in independent practice. We measured quality indicator (QI) adherence during the first year of independent practice among physicians who completed endoscopic training with a systematic assessment of competence. METHODS: We performed a prospective multicenter cohort study of invited participants from 62 training programs. In phase 1, 24 advanced endoscopy trainees (AETs), from 20 programs, were assessed using a validated competence assessment tool. We used a comprehensive data collection and reporting system to create learning curves using cumulative sum analysis that were shared with AETs and trainers quarterly. In phase 2, participating AETs entered data into a database pertaining to every EUS and ERCP examination during their first year of independent practice, anchored by key QIs. RESULTS: By the end of training, most AETs had achieved overall technical competence (EUS 91.7%, ERCP 73.9%) and cognitive competence (EUS 91.7%, ERCP 94.1%). In phase 2 of the study, 22 AETs (91.6%) participated and completed a median of 136 EUS examinations per AET and 116 ERCP examinations per AET. Most AETs met the performance thresholds for QIs in EUS (including 94.4% diagnostic rate of adequate samples and 83.8% diagnostic yield of malignancy in pancreatic masses) and ERCP (94.9% overall cannulation rate). CONCLUSIONS: In this prospective multicenter study, we found that although competence cannot be confirmed for all AETs at the end of training, most meet QI thresholds for EUS and ERCP at the end of their first year of independent practice. This finding affirms the effectiveness of training programs. Clinicaltrials.gov ID NCT02509416

    Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography, From Training Through Independent Practice.

    Get PDF
    BACKGROUND & AIMS: It is unclear whether participation in competency-based fellowship programs for endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) results in high-quality care in independent practice. We measured quality indicator (QI) adherence during the first year of independent practice among physicians who completed endoscopic training with a systematic assessment of competence. METHODS: We performed a prospective multicenter cohort study of invited participants from 62 training programs. In phase 1, 24 advanced endoscopy trainees (AETs), from 20 programs, were assessed using a validated competence assessment tool. We used a comprehensive data collection and reporting system to create learning curves using cumulative sum analysis that were shared with AETs and trainers quarterly. In phase 2, participating AETs entered data into a database pertaining to every EUS and ERCP examination during their first year of independent practice, anchored by key QIs. RESULTS: By the end of training, most AETs had achieved overall technical competence (EUS 91.7%, ERCP 73.9%) and cognitive competence (EUS 91.7%, ERCP 94.1%). In phase 2 of the study, 22 AETs (91.6%) participated and completed a median of 136 EUS examinations per AET and 116 ERCP examinations per AET. Most AETs met the performance thresholds for QIs in EUS (including 94.4% diagnostic rate of adequate samples and 83.8% diagnostic yield of malignancy in pancreatic masses) and ERCP (94.9% overall cannulation rate). CONCLUSIONS: In this prospective multicenter study, we found that although competence cannot be confirmed for all AETs at the end of training, most meet QI thresholds for EUS and ERCP at the end of their first year of independent practice. This finding affirms the effectiveness of training programs. Clinicaltrials.gov ID NCT02509416

    The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology

    Get PDF
    Background: The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a minimal genome of broad evolutionary and biological interest. Results: To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one inactive Nek to the cytoplasm. Conclusions: The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton

    Broad neutralization of SARS-related viruses by human monoclonal antibodies

    Get PDF
    Broadly protective vaccines against known and preemergent human coronaviruses (HCoVs) are urgently needed. To gain a deeper understanding of cross-neutralizing antibody responses, we mined the memory B cell repertoire of a convalescent severe acute respiratory syndrome (SARS) donor and identified 200 SARS coronavirus 2 (SARS-CoV-2) binding antibodies that target multiple conserved sites on the spike (S) protein. A large proportion of the non-neutralizing antibodies display high levels of somatic hypermutation and cross-react with circulating HCoVs, suggesting recall of preexisting memory B cells elicited by prior HCoV infections. Several antibodies potently cross-neutralize SARS-CoV, SARS-CoV-2, and the bat SARS-like virus WIV1 by blocking receptor attachment and inducing S1 shedding. These antibodies represent promising candidates for therapeutic intervention and reveal a target for the rational design of pan-sarbecovirus vaccines

    Cardiovascular magnetic resonance phase contrast imaging

    Get PDF
    corecore