445 research outputs found

    A novel handheld robotic-assisted system for unicompartmental knee arthroplasty: surgical technique and early survivorship.

    Get PDF
    Technology, including robotics, has been developed for use in unicompartmental knee arthroplasty (UKA) to improve accuracy and precision of bone preparation, implant positioning, and soft tissue balance. The NAVIOâ„¢ System (Smith and Nephew, Pittsburgh, PA, United States) is a handheld robotic system that assists surgeons in planning implant positioning based on an individual patient\u27s anatomy and then preparing the bone surface to accurately achieve the plan. The surgical technique is presented herein. In addition, initial results are presented for 128 patients (mean age 64.7 years; 57.8% male) undergoing UKA with NAVIO. After a mean of follow-up period of 2.3 years, overall survivorship of the knee implant was 99.2% (95% confidence interval 94.6-99.9%). There was one revision encountered during the study, which was due to persistent soft tissue pain, without evidence of loosening, subsidence, malposition or infection. These initial results suggest a greater survivorship than achieved in the same follow-up time intervals in national registries and cohort studies, though further follow-up is needed to confirm whether this difference is maintained at longer durations

    ABC: A Simple Explicit Congestion Controller for Wireless Networks

    Full text link
    We propose Accel-Brake Control (ABC), a simple and deployable explicit congestion control protocol for network paths with time-varying wireless links. ABC routers mark each packet with an "accelerate" or "brake", which causes senders to slightly increase or decrease their congestion windows. Routers use this feedback to quickly guide senders towards a desired target rate. ABC requires no changes to header formats or user devices, but achieves better performance than XCP. ABC is also incrementally deployable; it operates correctly when the bottleneck is a non-ABC router, and can coexist with non-ABC traffic sharing the same bottleneck link. We evaluate ABC using a Wi-Fi implementation and trace-driven emulation of cellular links. ABC achieves 30-40% higher throughput than Cubic+Codel for similar delays, and 2.2X lower delays than BBR on a Wi-Fi path. On cellular network paths, ABC achieves 50% higher throughput than Cubic+Codel

    Is the Web ready for HTTP/2 Server Push?

    Full text link
    HTTP/2 supersedes HTTP/1.1 to tackle the performance challenges of the modern Web. A highly anticipated feature is Server Push, enabling servers to send data without explicit client requests, thus potentially saving time. Although guidelines on how to use Server Push emerged, measurements have shown that it can easily be used in a suboptimal way and hurt instead of improving performance. We thus tackle the question if the current Web can make better use of Server Push. First, we enable real-world websites to be replayed in a testbed to study the effects of different Server Push strategies. Using this, we next revisit proposed guidelines to grasp their performance impact. Finally, based on our results, we propose a novel strategy using an alternative server scheduler that enables to interleave resources. This improves the visual progress for some websites, with minor modifications to the deployment. Still, our results highlight the limits of Server Push: a deep understanding of web engineering is required to make optimal use of it, and not every site will benefit.Comment: More information available at https://push.netray.i

    Leveraging Program Analysis to Reduce User-Perceived Latency in Mobile Applications

    Full text link
    Reducing network latency in mobile applications is an effective way of improving the mobile user experience and has tangible economic benefits. This paper presents PALOMA, a novel client-centric technique for reducing the network latency by prefetching HTTP requests in Android apps. Our work leverages string analysis and callback control-flow analysis to automatically instrument apps using PALOMA's rigorous formulation of scenarios that address "what" and "when" to prefetch. PALOMA has been shown to incur significant runtime savings (several hundred milliseconds per prefetchable HTTP request), both when applied on a reusable evaluation benchmark we have developed and on real applicationsComment: ICSE 201

    MadEye: Boosting Live Video Analytics Accuracy with Adaptive Camera Configurations

    Full text link
    Camera orientations (i.e., rotation and zoom) govern the content that a camera captures in a given scene, which in turn heavily influences the accuracy of live video analytics pipelines. However, existing analytics approaches leave this crucial adaptation knob untouched, instead opting to only alter the way that captured images from fixed orientations are encoded, streamed, and analyzed. We present MadEye, a camera-server system that automatically and continually adapts orientations to maximize accuracy for the workload and resource constraints at hand. To realize this using commodity pan-tilt-zoom (PTZ) cameras, MadEye embeds (1) a search algorithm that rapidly explores the massive space of orientations to identify a fruitful subset at each time, and (2) a novel knowledge distillation strategy to efficiently (with only camera resources) select the ones that maximize workload accuracy. Experiments on diverse workloads show that MadEye boosts accuracy by 2.9-25.7% for the same resource usage, or achieves the same accuracy with 2-3.7x lower resource costs.Comment: 19 pages, 16 figure

    Rational Parametrizations of Real Cubic Surfaces

    Get PDF

    The role of matrix cracks and fibre/matrix debonding on the stress transfer between fibre and matrix in a single fibre fragmentation test

    Get PDF
    The single fibre fragmentation test is commonly used to characterise the fibre/matrix interface. During fragmentation, the stored energy is released resulting in matrix cracking and/or fibre/matrix debonding. Axisymmetric finite element models were formulated to study the impact of matrix cracks and fibre/matrix debonding on the effective stress transfer efficiency (EST) and stress transfer length (STL). At high strains, plastic deformation in the matrix dominated the stress transfer mechanism. The combination of matrix cracking and plasticity reduced the EST and increased STL. For experimental validation, three resins were formulated and the fragmentation of an unsized and uncoupled E-glass fibre examined as a function of matrix properties. Fibre failure was always accompanied by matrix cracking and debonding. With the stiff resin, debonding, transverse matrix cracking and conical crack initiation were observed. With a lower modulus and lower yield strength resin the transverse matrix crack length decreased while that of the conical crack increased. (C) 2011 Elsevier Ltd. All rights reserved

    Energy Formulations of A-Splines

    Get PDF
    • …
    corecore