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Abstract

Real cubic algebraic surfaces may be described by either implicit or parametric equations. Each

of these representations has strengths and weaknesses and have been used extensively in computer

graphics. Applications involving both representations include the efficient computation of surface

intersections, and triangulation of curved surfaces. One particularly useful representation is the

rational parametrization, where the three spatial coordinates are given by rational functions of two

parameters. Rational parametrizations speed up many computations, and their relatively simple

structure allows one to control and avoid singularities in the parametrization. These parametriza

tions take on different forms for different classes of cubic surfaces. Classification of real cubic

algebraic surfaces into five families for the nonsingular case is based on the configuration of twenty

seven lines on them. We provide a method of extracting all these lines and from there a rational

parametrization of each of these families. The parametrizations of the real cubic surface compo

nents are constructed using a pair of real skew lines for those three families which have them, and

remarkably using a complex conjugate pair of skew lines, in a fourth family. The parametrization is

based on the fact that a real line generally intersects a cubic surface at three points. Points on the

surface are obtained by intersecting the surface with lines that pass through points on the two skew

lines. We also analyze the image of the derived rational parametrization for both real and complex

parameter values, together with "base" points where the parametrizations are ill-defined.
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1 Introduction

Low degree real algebraic surfaces (quadrics, cubics and quartics) playa significant Iole in construct

ing accurate computer models of physical objects and environments for purposes of simulation and

prototyping[6]. While quadrics such as spheres, cones, hyperboloids and paraboloids prove sufficient

for constructing restricted classes of models, cubic algebraic surface patches are sufficient to model the

boundary of objects with arbitrary topology in a C 1 piecewise smooth manner [7].

Real cubic algebraic surfaces are the real zeros of a polynomial equation f(x, y, z) ::; 0 of degree

three. In tills representation the cubic surface is said to be in implicit form. The irreducible cubic

surface which is not a cylinder of a nODsingular cubic curve, can alternatively be described explicitly

by rational functions of parameters u and v:

h(u,v) j,(u,v) h(u,v)
x= f4(u,v)' y= f4(u,v)' z= !4(u,v)' (1)

where Ii, i = 1 ... 4 are polynomials. In this case the cubic surface is said to be in rational parametric

form.

Real cubic algebraic surfaces thus possess dual implicit-parametric representations and this property

proves important for the efficiency of a number of geometric modeling and computer graphics display

operations [6, 18]. For example, with dual available representations the intersection of two surfaces or

surface patches reduces simply to the sampling of an algebraic curve in the planar parameter domain [4J.

Similarly, point-surface patch incidence classification, a prerequisite for boolean set operations and ray

casting for graphics display, is greatly simplified in the case when both the implicit and parametric

representations are available [4]. Additional examples in the computer graphics domain which benefit

from dual implicit-parametric representations are the rapid triangulation for curved surface display [8)

and image texture mapping on curved surface patches [12].

Deriving the rational parametric form from the implicit representation of algebraic surfaces, is

a process known as rational parametrization. Algorithms for the rational parametrization of cubic

algebraic surfaces have been given in [2, 21], based on the classical theory of skew straight lines and

rational curves on the cubic surface [9, 13, 22]. One of the main results of our current paper is to

constructively address the parametrization of cubic surfaces based on the reality of the straight lines

on the real cubic surface. In doing so we provide an algorithm to construct all twenty-seven straight

lines (real and complex) on the real nonsingular cubic surface. We prove that the parametrizations
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of the real cubic surface components are constructed using a pair of real skew lines for those three

families which have them, and remarkably using a complex conjugate pair of skew lines, in a fourth

family. There does not appear to be a similar rational parametrization for the fifth family that covers

all or almost all of the surface, so instead we use two disjoint parametrizations which involve one

square root each. A rational parametrization that covers part of the surface is described in [21]. In

that scheme points which lie on tangent planes through points on a real line are covered, but these

points do not necessarily comprise most of the surface, and the covering is in general two-to-one instead

of one-to-one. All of the parametrizations described in this paper are one- to-one, meaning that for any

point on the cubic surface there can be just one set of values (u, v) which give rise to that point.

We also analyze the image of the derived rational parametrization for both real and complex

parameter values, together with "base" points where the parametrizations are ill-defined. These base

points cause a finite number (at most five) of lines and points, and possibly two conic sections lying

on the surface, to be missed by the parametrizations. One of these conics can be attained by letting

u --+ ±oo and the other with v --+ ±oo separately, or by using projective coordinates {u, u'"} and {v, v'"}

instead of (u,v) and setting v:::; 0 and u = 0, respectively.

2 Preliminaries

One ofthe gems of classical algebraic geometry has been the theorem that twenty-seven distinct straight

lines lie completely on a nonsingular cubic surface [19]. See figure 1. Schliifi's double-six notation

elegantly captures the complicated and many-fold symmetry of the configurations of the twenty·seven

lines [20]. He also partitions all nonsingular cubic surfaces f(x,y,z):::; a into five families F I , ..• ,Fs

based on the reality of the twenty-seven lines. Family F I contains 27 real straight lines, family F2

contains 15 real lines, and family Fs contains 7 real lines while families F4 and Fs contain 3 real lines

each. What distinguishes F4 from Fs is that while 6 of the 12 conjugate complex line pairs of F4 are

skew (and 6 pairs are coplanar), each of the 12 conjugate pairs of complex line pairs of Fs is coplanar.

When a nonsingular cubic surface F tends to a singular cubic surface G (with an isolated double point

or a double line) 12 of F's straight lines (constituting a double six) tend to 6 lines through a double

point of G {22]. Hence singular cubic surfaces have only twenty-one distinct straight lines.

Alternatively a classification of cubic surfaces can be obtained from computing all 'base' points of
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Figure 1: A configuration of twenty seven real lines of a cubic surface shown with and without the

surface. Intersections of the coplanar straight lines are also shown.

its parametric representation,

ft(u, v) j,(u,v) fa(u,v)
x = f<l(u,v)' Y = 14(u,v)' Z = h(u,v)'

Base points of a surface parametrization are those isolated parameter values which simultaneously

satisfy it = h = h = 14 = o. It is known that any nonsingular cubic surface can be expressed as

a rational parametric cubic with six base points. The classification of nonsingular real cubic surfaces

then follows from:

1. If all six base points are real, then all 27 lines are real, i.e. the FI case.

2. If two of the base points are a complex conjugate pair then 15 of the straight lines are real, I.e.

the F2 case.

3. If four of the base points are two complex conjugate pairs then 7 of the straight lines are real,

I.e. the F3 case.

4. If all base points are complex then three of the straight lines are real. ill this case the three real

lines are all coplanar, I.e. the F4 and Fs cases.
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Figure 2: A cubic surface family with skew real straight lines

5



3 Real and Rational Points on Cubic Surfaces

We first begin by computing a simple real point (with a predefined bit precision) on a given real

cubic surface f(x,y,z) = O. For obvious reasons of exact calculations with bounded precision it is

very desirable to choose the simple point to have rational coordinates. Mordel! in his 1969 book [16]

mentions that no method is known for determining whether rational points exist on a general cubic

surface f(x, y, z) = 0, or findlng all of them if any exist. We are unaware if a general criterion or

method now exists or whether Mordell's conjecture below has been resolved.

The following theorems and conjecture exhibit the difficulty of this problem, and are repeated here

for information.

Theorem[[16],chap 11]: All rational points on a cubic surface can be found if it contains two lines

whose equations are defined by conjugate numbers of a quadratic field and in particular by rational

numbers.

Theorem[[16],chap 11]: The general cubic equation (irreducible cubic and not a function of two

independent variables nor a homogeneous polynomial in linear functions of its variables) has either

none or an infinity of rational solutions.

Mordell Conjecture[[16],chap 11]: The cubic equation F(X, Y, Z, W) = 0 is solvable if and only

if the congruence F(X, Y, Z, W) =: 0 (mod pr) is solvable for all primes p and integers T > 0 with

(X, Y, Z, W,p) = 1.

We present a straightforward search procedure to determine a real point on f(x, y, z) = 0, and if

lucky one with rational coordinates.

Collect the highest degree terms of I(x, y, z) and call this homogeneous form F3 ( x, y, z). Recursively

determine if F3(x, y, z) = 0 has a rational point. Being homogeneous, one only needs to check for

F3(x,y,l) = 0 and F3(x,y,O) = 0, which are both polynomials in one less variable, and hence the

recursion is in dimension. Now for a univariate polynomial equation g(x) = 0 we use the technique

of [15] to determine the existence and coordinates of a rational root. H not, one computes a real root

having the desired bit precision as explained below.

Additionally, if the highest degree terms of f(x, y, z) do not yield a rational point, we compute the

resultant and linear subresultants of f and f'Z:, eliminating x to yield new polynomials !I(y, z) and

xh(Y, z) + fa(x, y, z) (see [5] for details of this computation). Recursively compute the rational points

of h(Y,z) = 0, using the equation xh(y,z) + !s(x,y,z) = 0 to determine the rational x coordinate
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given rational y and z coordinates of the point.

In the general case, therefore, we are forced to take a real simple point on the cubic surface.

We can bound the required precision of this real simple point so that the translations and resultant

computations in the straight line extraction and cubic surface parametrization algorithm of the next

section, are performed correctly. The lower bound of this value can be estimated as in [10] by use of

the following gap theorem:

Gap Theorem ([10],p70). Let P(d,c) be the class of integral polynomials of degree d and maximum

coefficient magnitude c. Let Ji(Xl' ... , xn) E P(d, c), i = 1, ... , n be a collection of n polynomials in n

variables which has only finitely many solutions when homogenized. If (aI, ... ,an) is a solution of the

system, then for any j either Cti = 0, OT lail > (3dc)-nd
7l

•

4 Algebraic Reduction

Given two skew lines l,eU) = [::~:~] and I,(v) = [::~:~] on the cuhie snrface J(x,y,z) = 0, the

z,(u) z,(v)

cubic parametrization formula for a point p( 'Il, v) on the surface is :

where

[

X(U,V)]
p(u,v)= y(u,v) = al,+bl, = a(u,v)I,(u)+b(u,v)I,(v)

a+b a(u,v)+b(u,v)
z(u, v)

a = a(u, v) = V J(I,(v))· [I,(u) -I,(v)]

b =btu, v) =VJ(I,(u)). [l,eU) - I,(v)]

(2)

The total degree of the numerator of the parametrization formula in {u, v} is 4 while the denominator

total degree is 3. Note that if the lines are coplanar, formula (2) can only produce points on the plane

of the lines, hence the search for skew lines on the cubic surface.

Following the notation of [2], a real cubic surface has an implicit representation of the form

f(x, y, z) = Ax3 +B y3 +Cz3 +Dx2 y +Ex2z +F xy2 +Gy2 z +Hxz2 + I yz2 + Jxyz

+ 1(x' +Ly' +Mz' +Nxy+ Oxz +Pyz +Qx +Ry +Sz+ T = o.
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Compute a simple (nonsingular) point (xo, Yo, zo) on the surface. We can move the simple point to the

origin by a translation x = x' +xo, Y = y' +Yo, z = ;I +Zo, producing

t (x', y', z') = Q'x' +R'y' +S'z' +... terms of higher degree.

Next, we wish to rotate the tangent plane to J(x', y', Zl) at the origin to the plane z" = O. This can be

done by the transformation

x' = x ff , yl = y", z' = (Zll - QIX" - R'y")JS' if SI # 0

Xl = x", yl = (;II - Q'x")JR/, Zl = yff if 81 = 0 and RiO

X'=ZffJQ', y'=x", z'=yl if 8'=0, RI==O, and QI#O.

Fortunately Q', R I
, and 8 1 cannot all be zero, because then the selected point (xo, Yo, zo) would be a

singular point on the cubic surface.

The transformed surface can be put in the form

where !;(X",y") and gj(x",y") are terms of degree j in x" and y", In general, this surface intersects

the tangent plane z" == 0 in a cubic curve with a double point at the origin (as its lowest degree terms

are quadratic). This curve can be rationally parametrized as

LfftZ +Nfft + [(II

(3)
B"t3 +F"t2 +Dfft +Aff

B"t3 +FfftZ+D"t +A"
L"t3 + N fft2 + l("t

tK(t) =

K(t)

L(t)

x"

y"

Zll= 0,

where A", B", ... are the coefficients in J"(x", y", ;II) that are analogous to A, B, ... in J(x, y, z).

In the special case that the singular cubic curve is reducible (a conic and a line or three lines), a

parametrization of the conic is taken instead.

We transform the surface again to bring a general point on the parametric curve specified by t to

the origin by the translation

x" = "+ K(t)

y" Ji+L(t)

z" = z
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The cubic surface can now be expressed by

f(x, y, x) = Q(t)x +R(t)y +Set). +... terms of higher degree

We make the tangent plane of the surface at the origin coincide with the plane z = 0 by applying

the transformation

y = iI
Q(t) _ R(t) _ 1_

- S(t)' - Set) y + S(t)"

The equation of the surface now has the form

f(x, ii, x) = x+[i,(x, iI) + i.(x, iI)H iox'] +19,(x, iI) +!h(x, iI)x +9. (x, iI)x' +90x'i .

The intersection of this surface with z = 0 gives

i,(x, iI) +9'(X, iI) = 0 (4)

Recall that xand y, and hence i2 and 03' are functions oft. As shown in [2], equation (4) is reducible,

and hence contains a linear factor, for those values of t for which i2(i, y) and 03(X, y) have a linear or

quadratic factor in common. These factors correspond to lines on the cubic surface, and our goal is to

find the values of t which produce these lines.

The values of t may be obtained by taking the resultant of i 2(x, it, t) and 93(x, ii, t) by eliminating

either x or y. Since i 2 and 93 are homogeneous in {x,V} it does not matter with respect to which

variable the resultant is taken[23Jj the result will have the other variable raised to the sixth power as

a factor. Apart from the factor of x6 or fl, the resultant consists of an 81st degree polynomial PSl(t)

in t. At first glance it would appear that there could be 81 values of t for which a line on the cubic

surface is produced, but this is not the case:

Theorem 1: The polynomial PSl(t) obtained by taking the resultant of i2 and 93 factors as

P81 (t) = P,,(t)[P,(t)16 [p8 (t)J', where P,(t) = BUt' +FUt' +DUt +AU, the denominator of K(t) and

L(t), and P,(t) is the numerator of Set) (P,(t) = S(t)[P,(t)'J).

Sketch of proof: This proof was performed through the use of the symbolic manipulation program

Maple [l1J. When expanded out in full, PSl(t) contains hundreds of thousands of terms, so a direct

approach was not possible. Instead, P81(t) was shown to be divisible by both [P3(t)]6 and [P6(t)]6.
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When iz and 93 were expressed in terms of the numerators of Q(t), R(t), and Set), it was possible

to take the resultant without overflowing the memory capabilities of the machine. The resultant could

be factored, and [P6(t)J6 was found to be one of the factors.

The factor [P3(t)]6 proved to be more difficult to obtain. Mter the factor [P6(t)]6 was removed, the

remaining factor was split into several pieces, according to which powers of Q(t), R(t), and Set) they

contained. These pieces were each divided by [P3(t)]6, and the remainders taken. The remainders were

expressed as certain polynomials times various powers of PaCt), as in ao(t) +Ul(t)PS(t) +az(t)[P3(t)]2 +
a3(t)[P3(t)]' + a,(t)[P3(t)J' +as(t)[P3(t)]s. We were able to sbow that ao(t) is in fact divisible by P3(t).

Then we could show that ao(t)/Ps(t) + Ul(t) is also divisible by Ps(t), and so on up the line until we

could show the whole remaining factor is divisible by [PS (t)]6. Details are given in the appendix.

The solutions of PZ7(t) = 0 correspond to the 27 lines on the cubic surface. A method of partial

classification is suggested by considering the number of real roots of PZ7(t): if it has 27, 15, or 7 real

roots the cubic surface is FI , F2, or Fa, respectively, and if P27(t) = 0 has three real roots the surface

can be either F4 or Fs. However, this is not quite accurate. In exceptional cases, P27(t) may have a

double root at t = to, which corresponds to i2 and 9a sharing a quadratic factor. lithis quadratic factor

is reducible over the reals, the double root corresponds to two (coplanar) reallinesj if the quadratic

factor has no real roots it corresponds to two coplanar complex conjugate lines.

Theorem 2: Simple real roots of P27(t) = 0 correspond to real lines on the sur/ace.

Proof: Let to be a simple real root of P27(t) = O. Since P27(t) is a factor of the resultant of

i2 and 9a obtained by eliminating z or y, i2(i,ii,to) and 9s(X,y,to) must have a linear or quadratic

factor in common. If i2(Z, y, to) and 9a(Z, ii, to) have just a linear factor in common, then that factor

is of the form cli +C2Y where CI and C2 are real constants since all the coefficients of i 2(z, y, to) and

9a(X,y, to) are real and i2(Z,y, to) and 9a(Z, y, to) are homogeneous in i and y. In this case the real

line Clx+czy = 0 lies on the surface.

If iz(x, y, to) and 9s(X, fI, to) have a quadratic factor in common, then that factor is of the form

CIZ
Z + czzy + csyz. We will show that if this is the case, then P27(t) has at least a double root at

t = to. This will be sufficient to prove that simple roots of PZ7(t) can only correspond to common linear

factors of iz(z, y, to) and 9a(X, y, to), and hence real lines on the cubic surface.

Ifwe write i,(x, ii, t) = Q,(t)x'+Q,(t)xii+Q3(t)ii' and 93(x, ii, t) = Q,(t)x3+Qs(t)x'ii+Q6(t)xii'+
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Q7(t)p3, then the resultant of i 2(x,y,t) and !J3(x,y,t) obtained by eliminating x is

Q,(t) Q,(t) Q3(t) 0 0

0 Q,(t) Q,(t) Q3(t) 0

R(j,,93) = 0 0 Q,(t) Q,(t) Q3(t) ·6 (5)y .

Q,(t) Q,(t) Q6(t) Q7(t) 0

0 Q,(t) Q,(t) Q6(t) Q7(t)

We need to show that if i2(X, y, t) and !J3(X, y, t) have a quadratic factor in common when t = to,

then R(i2,!J3)/y6 has a double root at t =to. This is equivalent to showing that R(j2(tO),9'3(tO)) =0

and (d/dt)[R(j2(tO),!J3(tO))] = o. If i2(X,y,to) and !J3(X,y,to) have a quadratic factor in common,

then !J3(tO) = k(CIX - c2y)i2(tO) for some real constants k, Cll and C2. Thus Q4(tO) = kClQI(tO),

Q,(to) = k[CIQ,(tO) - C,Q,(tO)], Q6(tO) = k[CIQ3(tO) - c,Q,(to)], and Q7(tO) = -kC,Q3(t). Making

the'e substitution, in (5), we find tbat indeed both R(j,(to), 93(tO)) = 0 and (d/dt)[R(j,(to), 93(tO))1 =

o.•
To summarize, the simple real roots of P27(t) = 0 correspond to real lines on the cubic surface.

Double real roots may correspond to either real or complex lines, depending on whether the quadratic

factor 12(X, ft, t) and !J3(x, y, t) have in common is reducible or not over the reals. Higher order roots

indicate some type of singularity. Complex roots can only correspond to complex lines in nonsingular

cases. If to, a complex root of P27(t) = 0, corresponded to a real line CIX - C2Y on the surface, then

to would correspond to the same line, as a real line is its own complex conjugate. Thus one real line

would be leading to two distinct values for to.

When the cubic surface is of class F l , F2 , or F3 , it contains at least two real skew lines, and

the parametrization in [2] is used. Having obtained skew lines ll(U) = [Xl(U) YI(U) Zl(U)] and

lz(v) = [Xl (v) Yl(V) Zl(V)]' we consider the net of lines passing through a point on each. This is given

by
Z-Zl Z2-Zl

XXlXZXl
Y-YI Y2-Yl
XXIXZXl

(6)

Solving these for Y and Z in terms of x, and substituting into the cubic surface f(x, y, z) = 0 gives a

cubic equation in x with coefficients in u and v, say G(x,u,v) = O. Since x = Xl and X = X2 satisfy

this equation, G(x, u, v) is divisible by x - Xl and x - X2, and we have that

( ) ---,---,::.G;>("',,,u=,,-,v:J.)--;=
H u,v,. = ['x ( )][ ( )1X, u • " v

11



1s a linear polynomial in x. This is solved for x as a rational function of u and v. Rational functions

for y and z are obtained analogously.

The parametrization (1) 1s then computed as in (2):

(x, y, x) = (x(u,v), y(u,v), x(u,v)) = (h(u,v)/f,(u,v), j,(u,v)/!«u,v), h(u,v)/f,(u,v»

where

with

h(u,v)

j,(u,v) =

j,(u,v)

f,(u,v)

a(u, v)x,(u) +b(u, v)x,(;,)

a(u,v)y,(u) +b(u,v)y,(v)

a(u, v)x,(u) +b(u, v)x,(v)

a(u,v)+b(u,v) ,

(7)

a(u, v) = 'V f(l,(v»· [I,(u) -I,(v)1 , b(u, v) = 'V f(I,( u» . [1,(u) - 1,(v)1

In this notation -h(u,v) and f4(U,V) are the coefficients of XOand xl, respectively, in H(u,v,x).

The symbolic manipulation program Maple was used to verify that the expressions It (u, v)/14(u, v),

h(u,v)/f4(U,V), and !s(u,V)/f4(U,v) do simplify to x, y, and z respectively.

Using floating-point arithmetic, it may be the case that some terms with very small coefficients

appear in It(u,v), h(u,v), h(u,v), and f4(U,V) when the coefficients should 1n fact be zero. Specifi

cally, these are the terms containing u3
, v3

, u4
, v\ u3 v and uv3 in It, 12, and 13, and terms containing

u3 and v3 in 14. These coefficients were shown to be zero using Maple, 50 in the algor1thm they are

subtracted off 1n case they appear in the construction of It, h, 13, and 14.

5 Parametrizations without Real Skew Lines

When the cubic surface is of class F4 or Fs it does not contain any pair of real skew lines. In the F1

case we derive a parametrization using complex conjugate skew lines, and in the Fs case we obtain a

parametrization by parametrizing conic sections whlch are the further intersections of the cubic surface

with planes through a real line on the surface.
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5.1 The F, Case

In this case there are 12J:1airs of complex.._cpnjugate lines. For 6 oLthfse.,J)airs, the_two lines intersect_

(at a real point). In the other 6 pairs, the two lines are skew. Let one pair of complex conjugate skew

lines be given by (XI(U +vi), YI(U + vi), Zl(U +vi» and (Xl('U - vi), VICU - vi), Zl(U - vi». Here

Xl, YI, and Zl are (linear) complex functions of a complex variable, and X2, Yz, Z2 may be considered

to be the complex conjugates of Xl, Yb Zl. Also the real parameters u and v are unrestricted. Then

the parametrization is again given by (7). Even though the quantities Xi, Vi, and Zj are complex, the

expressions for x(u,v), y(u,v), and z(u, v) turn out to be real when X2, Yz, and Zz are the complex

conjugates of Xl, VI, and Zl. The symbolic manipulation program Maple was used to verify that the

quantities h(u,v)/i, h(u,v)/i, h(u,v)/i and !4(u,v)/i are all real when (XI, Y1J ZI) and (xz,Yz,zz)

are complex conjugates.

Using floating-point arithmetic, it may be the case that some terms with very small coefficients

appear in II(u, v), h(u, v), and h(u, v) when the coefficients should in fact be zero. Specifically, these

are the terms containing u3v and uv3 . These coefficients were shown to be zero using Maple, so in the

algorithm they are subtracted o.!f in case they appear .in the constru~.tion.~f /1, 12, and h.

Theorem 3: The algorithm provides a valid parametrization of an F4 cubic surface when u and

v are related as follows: u is unrestricted (both real and imaginary parts), and v is the complex

conjugate of u. Each real point on the F4 surface, except for those corresponding to base points of the

parametrization, is obtained for exactly one complex value of u.

Lemma: Given two skew complex conjugate lines 11(U) = (A+Bi, C+ Di, E+Fi)+(G+Hi, I +

Ji, J( +Li)u and h(v) = (A -Bi, C -Di, E - Fi)+(G -Hi, 1- Ji, K -Li)v, then for an arbitrary

real point p :::: (x,y,z), there exists a unique complex value Uo such that the points p, h(uo), and

11(UO) are collinear.

Proof of Lemma: The points p, h(uo), and 11(UO) will be collinear if and only if the vectors

p - h (uo) and p - h(1to) are parallel. Setting the cross product of these two vectors equal to zero and

splitting Uo into real and imaginary parts as ao + boi, we find that there is a solution when

and
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and
B G H x-A G H

M1 = D I J M 2 = y-C I J

F J( L x-E J( L

B x - A H B G x-A

M3 = D y-C J M4 = D I y-C

F z-E L F J( x-E

The denominators Mr +Mi are positive because M 1 is nonzero exactly when It does not contain

a real point. It contains a real point If and only if the vectors [B D Ff 1 [G I J(JT 1 and [H J LjT

are linearly dependent, and this is equivalent to M1 = O.

There certainly cannot be two distinct complex values 'ILl and 'U2 such that p, hCul), and hCul)

are collinear and also p, h(U2), and h(U2) are collinear as that would imply hCul). h(U2), II(Ul) and

h(U2) are coplanar, which is impossible as 11 and It" are skew. _

Proof of Theorem 3: Given an arbitrary real point (xo, Yo, 2(0) on the cubic surface, Equation (8)

can be used to obtain a specific parameter value tto = (ao,bo). This value of (ao,bo), when inserted

into the parametrization (7), gives back (xo. Yo, zo), unless (aQ, be) happens to make the fractions in (7)

0/0 , which means that (ao,bo) is a base point of the parameter map. _

As will be shown in Section 6, there are five base points in this F4 parametrization, with one of

them being real. The points on the cubic surface which may be missed include one real line, wh.ich

corresponds to the real base point. The other base points correspond to two pair of complex conjugates

lines. For each pair, if the two lines are coplanar, and thus have a real point in common, that point

is also missed in the parametrjzation. Skew complex lines corresponding to base points result in no

missed real surface points.

It may seem odd that a real line may be missed by this parametrization, but in fact the real line

does intersect the two skew complex conjugate lines. Here an extended notion of a realllne is used:

a line may be of the form p = du where p is a real 3D point and d is a real 3D vector, but in the

context here we have to allow u to take on all complex values. With this understanding it is possible

for an apparent real line to intersect both complex conjugate skew lines in complex points, and when jt

does, the points of intersection are complex conjugates. All points on this real line map into the same

(ao, bolo
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Figure 3: An Example of an Fs cubic surface

5.2 The F, Case

When the cubic surface is of class Fs (example shown in figure 3) it does not have any complex conjugate

skew lines. One could attempt to use one real line and one complex line, or two non-conjugate complex

skew lines, and proceed as before. However, there is no simple way to describe the values the parameters

u and v may take on. In the Fl , F2 , and F3 cases, u and v were unrestricted real parameters. In the F4

case, when we let u = R(u) +;s(u)i and v = R(v) +!;'S(v)i, we obtained a parametrization in which R(u)

and S'(u) are unrestricted, and then R(v) = R(u) and S,}(v) = -S(u). If we try the same idea with one

real and one complex line, or two complex lines which are not conjugates, and let R(u) and S'(u) be

unrestricted, then R(v) and S,}(v) are complicated functions of R(u) and S(u), typically seventh degree

polynomials.

In [21], a rational parametrization based on tangent planes at points lying on a real line is given.

However, in general this only parametrizes part of the cubic surface. Points on the surface which do

not lie on any tangent plane through a point on the chosen real line are missed, and these may account

for a substantial portion of the surface. Since our goal is to parametrize the entire surface we instead

parametrize the surface by parametrizing planes through one of the real lines on the surface, and then

by parametrizing the conic sections which are the further intersections of these planes with the cubic

surface. The parametrization of the conics will be that of [3J. One cost of parametrizing the whole
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surface is that we now have to use a square root in the parametrization. Another drawback of this

parametrization is that there are typically two values of (u, v) corresponding to points on the cubic

surface, instead of the one-to-one map resulting when both curves used in the parametrization are line,

as in the F I through F4 cases. Also, we have to use two distinct parametrizations; one which works

when the conics are ellipses and the other for hyperbolas.

The procedure for finding the parametrization starts out like the ones for the F I through F4 cases.

In this case three coplanar real lines and 24 complex lines are determined, and the complex lines are

found to come in 12 coplanar conjugate pairs. Since the methods of the other cases involving skew

lines do not work here, one of the real lines is chosen to be mapped into the x-axis and the plane

of the three real lines is mapped into the xy-plane. Specifically, suppose a real line I is given by

leu) = (A +Bu,C + Du,E+Fu) and that the normal to the plane is given by N = (N1 , N2, N3). N

is obtained by taking the cross product of the (unit) direction vectors of two of the real lines, or by

taking any unit vector perpendicular to the real lines if they are all parallel. Next, let B = (BI , B2 , B3 )

be the cross product of the direction vector of I with N. We move a point on 1 to the origin by the

translation x = Xl + A, y = y' +C, z = z' +E, and then apply the transformation

.'
y'

(B,N3 - B3N,)x" + (FN, - DN3)y" + (DB3 - FB,)z"

(B3N, - B, N3)." + (BN3 - FN1 )y" + (FB, - BB3)z"

(B,N, - B,N, )." + (DN, - BN,)y" + (BB, - DBIlz"

(9)

This brings I to the x" axis and the plane of the real lines to z" = O.

Planes through the xlf-axis can be parametrized by Zlf = u1/1 for real values of u. All planes through

the xlf-axis are obtained except for Zlf = 0, the plane containing the three real lines already found.

The cubic surface now has an equation of the form flf(X", ylf, Zlf) = 0, and satisfies IIf(x", 0, 0) = O.

If we now make the substitution <= uy" into IIf(x,", ylf, Zlf), we obtain and equation that factors as

yllgl(X", y") = 0, where glf(X", 'I') is a quadratic in Xlf and ylf. The factor of V' indicates that the line

y" = 0 is in the intersection of the cubic surface and the plane ;}I = uy" for any real u. The conic

section g(X",y") = 0 is parametrized as in [3]: Let g(XIl ,1/I ) = ax"2 +bylf2 +CXlfUI +dx" +eylf + I,

and the discriminant k = c2 - 4ab. The quantities a through I are polynomials in 'U.

If k < 0, the conic is an ellipse, and is parametrized by

x" [af(e, - 2bd) - d(t, +t3)J.' + [df(ee - 2bd) - 2ft3]' + f'(ee - 2bd)
a(t,+t3)" df(e' 4ab).+f(t, t3)
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where

y"
f(c' - 4ab)(av' +dv + J)

a(t,+t3)V'-df(c' 4ab)v+f(t,-t3)

x"

This gives real points only when the terms t 1 and t2 have the same sign or are zero. H t l and t2

have opposite sign, g(X'I , yff) = 0 has no real points, and geometrically this means that the plane

zl/ = uyll intersects the cubic surface only in the x"-axis. Thus values of u should be restricted to those

that give non-negative values for t1 t2 • Upon back substitution using Zll = uy" and (9), in the final

parametrization X, v, and z are given by quotients offunctions of the form QI(U, v) +Q2(u, v) VQ9(u),

where Ql(U,V) is of degree six in u and twain v, Q2(U,V) is of degree one in u and twain v, and Q3(U)

is of degree nine in u alone. Due to the use of floating-point arithmetic, a nonzero coefficient for u lO

may appear in Q3(u), and this is subtracted off in case it does show up.

H k ~ 0, the conic is a hyperbola or parabola, and is parametrized by

arc + ";0' - 4ab)v' + 2aev + f(o - ";c' - 4ab)
2a";c2 4abv+2ae cd+d";c2 4ab

y" = -2a(av'+dv+J)
2a";c2 4abv+2ae cd+d";c2 4ab

Here real values are given for all u and v for which the denominators are nonzero. In the final

parametrization x, Y, and z are given by quotients offunctions of the form [Ql(u, v) +Q2(u, v )VQ3(u)]

/[Q4(u, v) +Qs(u, v) VQ3(u»), where Ql(u, v) is of degree three in u and two in v, Q2(u, v) is of degree

one in u and two in v, Q3(u) is of degree four in u alone, Q4 (u, v) is of degree three in u and one in v,

and Qs(v) is of degree one in each of u and v.

6 Classification and Straight Lines from Parametric Equations

We also consider the question of deriving a classification and generating the straight lines of the cubic

surface given its rational parametric equations (equation (1) above):

h(u,v) j,(u,v) fa(u,v)
x = !4(u,v)' y = f,(u,v)' Z = !4(u,v)'

Note that given an arbitrary parametrization, the fact that it belongs to a cubic surface can be

computed by determining the parametrization base points and multiplicities.
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The computation of real base points which are the simultaneous zeros of h = 12 = fa = 1... = 0,

are obtained by first computing the real zeros of h = h = 0 using resultants and subresultants, via

the method of birational maps [5] and then keeping those zeros which also satisfy fa = 14 = o. The

classification follows from the reality of the base points, as detailed in the preliminaries section.

Having determined the base points, the straight lines on the cubic surface are then determined

by the image of these points and combinations of them. In general there can be six real base points

for cubic surfaces. The image of each of the six base points under the parametrization map yields a

straight line on the surface. Next the fifteen pairs of base points define lines in the u, v parameter space,

whose images under the parametrization map also yield straight lines. Finally the six different conics

in the u, v parameter space which pass through distinct sets of five base points, also yield straight line

images under the parametrization map. See Bajaj and Royappa [8] for techniques to find parametric

representations of the straight lines which are images of these base points. The question of determining

parametric representations of the straight lines which are the images of parameter lines or parameter

conics is for now, open.

Normally a cubic surface parametrization has six base points, but in the case of our parametrizations

for the FI, F2, F3, and F4 surfaces, the number of base points is reduced to five. This happens because

the degree of the parametrization is sufficiently small: neither u nor v appears to a power higher than

the second. Consider the intersection of the parametrized surface with a line in 3-space. Let the line be

given as the intersection of two planes ajJ: +biY+ CiZ+ dj = 0 for i = 1,2. Then when the substitutions

x = h(u,v)/14(U,V), Y = 12(u,v)/i4(u,v), z = !s(U,V)/14(U,V) are made into the equations of the

lines, we obtain polynomials of degree two in each of u and v. When resultants of these polynomials

are taken to eliminate either u or v, univariate polynomials of degree eight are obtained. This indicates

that there could be as many as eight intersection points of the line with the surface. However, a

cubic surface will intersect the line in only three (possibly complex) points, counting multiplicity and

solutions at infinity. The difference between these two results (eight and three) is the number of base

points. A cubic parametrization would have led to nine possible intersection points when considering

the algebraic equations, and hence six, the difference of nine and three, is the number of base points

for such a parametrization.

Let h and h be the two skew lines used in the parametrization, whether they be real or complex.

The base points (u,v) correspond to lines on the cubic surface which intersect both hand h. Real
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base points correspond to real lines and complex base points correspond to complex lines. One of the

many useful results on nonsingular cubic surfaces is that given any two (real or complex) skew lines on

the surface, there are exactly five lines that intersect both [22). For an FI surface, the five transversal

lines, and the base points, are all real. Thus those five real lines are missed by the parametrization

(1). For an F2 surface, three of the base points are real and the other two form a complex conjugate

pair. The parametrization (1) consequently misses the three real lines incident to both It and 12 . In

addition, if the two transversal complex conjugate lines are coplanar and have a real intersection point,

that point is also missed. For both Fa and F4 surfaces, one base point is real and the other four form

two conjugate pairs. In each of these cases there is one real line through both II and h, and that line

is missed. Again, if a pair of transversal complex conjugate lines is coplanar, their real intersection

point is missed, 50 there may be two such isolated points for Fa and Foj. As will be demonstrated

in the example below, the missing points on the surface can be approached as (u, v) approaches the

correspondlng base point in an appropriate manner.

In addition to the transversal lines, two conic sections are also missed in the parametrization of the

FI , F21 and Fa surfaces. One conic is obtained as follows: take the intersection of the plane containing

It (u) and perpendicular to 12(v) with the cubic surface. This intersection consists of II plus a come. It

turns out that the value of v at which 12 intersects this plane tends to ±oo. Thus points on the conic

are not obtained for finite values of v, even though the line 11 does turn out to be reachable. The other

missing conic is found by interchanging the roles of It and h. These two conics lie on parallel planes,

and may be obtained if the parametrization uses projective coordinates as indicated in the example

below.

7 Conclusion and Future Research

We have presented a method of extracting real straight lines and from there a rational parametrization

of each of four families of nonsingular cubic surfaces. The parametrizations of the real cubic surface

components are constructed using a pair of real skew lines for those three families which have them,

and remarkably using a complex conjugate pair of skew lines, in a fourth family. In each of these, the

entire real surface is covered except for one, three, or five lines which intersect both skew lines, one or

two isolated points, and two conic sections. The missing conics can be recovered through the use of

projective instead of real coordinates. For the last family, in which two real skew lines do not exist, in
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order to cover the whole surface we had to use two separate parametrizations, each involving a square

root. Fortunately many graphics applications, such as the triangulation of a real surface, will involve

only the classes of cubics which do contain real skew lines. These real skew lines will correspond to

non-intersecting edges of the tetrahedra. Open problems remain in computing the images of curves

containing the real base points in the parameter plane. All figures of the cubic surfaces shown in this

paper were made using the GANITH toolkit [8].

An additional associated line of future research is in computing invariants for cubic surfaces based on

its straight lines. In Computer Vision, as pointed out by Holt-Netravali [14] and Mundy-Zisserman [17],

it is essential to derive properties of curves and surfaces which are invariant to perspective projection

and to be able to compute these invariants reliably from perspective image intensity data. In connection

with FFT (= First Fundamental Theorem of Invariant Theory), referring to Abhyankar [1] and Mundy

Zisserman [17] for details, we attempt to calculate complete systems of symbolic invariants of cubic

surfaces. In doing these calculations, it is important to know all the relations between a set of invariants

which is the content ofSFT (= Second Fundamental Theorem of Invariant Theory).

Turning to our specific situation, we may derive projective invariants of a cubic surface from si

multaneous invariants of the 27 lines on it. Namely, by taking the coefficients of two planes through

a line in 3-space we get a 2 x 4 matrix whose 2 x 2 minors are the six Grassmann coordinates of the

line. Thus we get a 27 x 6 matrix; its 6 x 6 minors are invariants and pure covariants as well as dot

products between them. This is the FFT of vector invariants. In this paper, since we have derived

an effective classification of cubic surfaces based on the line configurations, we can now derive these

invariants (symbolically). Details of this procedure are left to a subsequent paper.

Appendix A: Examples

In this appendix we provide examples of the parametrization of F1 and F4 cubic surfaces.

An F1 Surface

The F1 surface is given by the implicit equation

f(x, y, z) = l6x3 - lOy3 - l56z3 +3x2 y + I01x2z - 38xy2 +72y2z +39xz2 - 74yz2 - 81xyz

- 32x2 +20y2 +475z2 +81xy -17xz +81yz - 480z = 0 .

Two skew lines on this surface are h(u) = (u + 2,-u,-u) and h(v) = (l,v - 4,v/3). See figure 4.

With these lines, we obtain the parametrization (x(u, v), y( 'U, v), z(u, v» = (ft( 'U, v)j!4( 'U, v),!2(u, v)

20



Figure 4: An F1 cubic surface with two skew real straight lines.

If.(u,v), h(u, v)/ f.(u, v» where

II I85u2v2
- 239Iu2v + 4I22u2 + 467uv2

- 7671uv + I8630u+ I94v2
- 4860v + 14400

12 - 55u2v2 - 849u2v + 3438u2 + 233uv2
- 2I45uv + 5346u + 6I8v2 - 5892v + 13680

(10)

(11)

/4 240u2v - 2520u2 + I85uv2
- 2301uv +3078u + 97v2

- 212Iv + 5490 .

The five b,.e points, where II = h =h = !< =0, are (u, v) = (-1,9/2), (-5/4,5), (-12,114/11),

(-37/29,81/16), and (-29/15, 156/23). These correspond to tbe lines (1, w + 2, -w), (w, -w +2,

5/3 w), (w+256/47, -62/121 w+192/47, -94/121 w), (w-25/191, -99/128 w+370/191, 191/128 w),

and (w - 615/113, 293/322w- 348/113,113/322 w), respectively. As an example of what is meant by

this correspondence, consider an arbitrary point (x, y, z) in 3-space. The values of Uo and Va for which

the points (x,y,z), (UD +2,-uo,-uo) and (I,vo- 4,vo/3) are collinear are given by

( )
_(-4X+Y-3Z+8 3(4X-Y+5Z-8»)

~,~- , .2x-y+3z-62x-y+3z-4

When (x, y, z) = (1, w +2, -w) is plugged into this expression, we obtain (uo, va) = (-1,9/2). Since

this is a base point, however, plugging this into (10) yields % for x, y, and z.

It is evident from (11) that a point (x, y, z) on the cubic surface will be missed when a denominator

is zero while the corresponding numerator is not. In this example these points lie on the planes E t ,
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given by" 2x - y +3z = 6, and E 2 , given by 2x - y +3z = 4. E 1 contains 12 and is perpendicular to it,

while E2 contains it and is perpendicular to 12 • Note that E1 and E2 are parallel.

The intersection of E 1 with the cubic surface consists of the line 12 and a conic section. Solving

for z from the equation for E1 and substituting that into f( x, y, z) = 0 yields (x - 1)(55x2 - 185y2 

130xy - 519x + 1281y + 1386) = O. When both x = 1 and 2x - y + 3z = 6, the numerator for Uo in

(11) is zero as well as the denominator. The result of this is that points on h are reached by (10).

Substituting in u = 1 gives Uo = -1, and substituting u = -1 into (10) gives (x, y, z) = (1, -(55v

327)/(l1v - 3),-(55v - 327)/(l1v - 3)), which does in fact give I, (except for the point (I, 35/31,

9/31), obtained when v = 9/2, a base point. The li/14 approach different values as (u, v) --+ (-1,9/2)

in different directions.)

On the other hand, the points on the conic cannot be obtained by this parametrization, but can

only be approached by letting u -1' ±oo. In fact, the conic can be parametrized by letting u --+ ±oo in

(10). The result is

( ) _ (185V' - 2391v + 4122 55v' - 849v + 3438 -35v' + 597v - 2214)
x, y, z - 120(2v 21) , 120(2v 21)' 40(2v - 21)

Another way of handling this is to use projective coordinates. We can replace u by u/u* and v by

v/v* in (10) and clear denominators, yielding polynomials that are biquadratic in {u,u·} and {v,v·}.

The variables would then range over the Cartesian cross product of two one-dimensional projective

spaces. Points on the above conic are attained for u· = a and v· = 1. Naturally a symmetric argument

holds for the intersection of plane E 2 with the cubic surface, and points on the corresponding conic are

attained when u· = 1 and v· = O.

The projective space approach still will not resolve the problems with the base points. However,

every point on the lines that are missed can be approached as (u, v) approaches the corresponding

base point in the appropriate manner. For example, consider the transversal line (I, w +2, -w) from

above, with base point (-1,9/2). If we let (u, v) approach (-1,9/2) along the line given by (u, v) =

(-1 +m, 9/2- [3(289w+ 111)J/[16(31w+ 9)]m), then (x, y, z) ~ (I, w+2, -w) as m ~ O. This gets us

every point on (l,w+2,-w) except for w = -9/31, but that point is approached if(u,v) --+ (-1,9/2)

along the line u = -1.

An F4 Surface
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Figure 5: An F4 cubic surface

The F4 surface (shown in figure 5) is given by the implicit equation

f(x, y, z) = 1696x3 -1196y3 + 881z3
- 2984x 2y - 62x2z +2424xy2 + 1174y2z - 913xz2 -781 yz2

+ 450xyz - 1802x2 +443y2 - 1217z2 + 1786xz + 266xy - 1596yz + 1696z = 0 .

Two skew c.omplex conjugate lines on this surface are 11(u) = ((I-i)u+ 1+i, (-1 +2i)u+ 2- i, (-2

3i)u+3+2i) and I,(u) = ((1+i)u+1-i, (-1-2i)u+2+i, (-2+3i)u+3-2i). With these lines, we ohtain

the parametrization (x( u,.), y(u, .), z(u, .)) = (II(u,.)/!«u, .), f,(u,.)/!«u, .), h(u, .)/1.(u,.))

where

It 68358u4
- 69411u3 + 136716u2v2 +42607u2v - 22381u2

- 69411uv2

- 39230u. +43253u +68358.' +42607.3 - 5775.' +8221. - 11755

12 -68958u4 +284194u3 -137916u2v2 +4441u2v - 366491u2 + 284194uv2

+11300u. +193570u - 68958.' +4441.3 - 124361.' - 8901. - 36677 (12)

fa -133716u4 + 417667u3
- 267432u2v2 - 37422u2v - 466042u2 +417667uv2

+ 58622u. +224171u -133716.' - 37422.3 -164742.' - 22866. - 39654

I. 2(33879u3 +300u'. - 62530u' +33879u.' +3994u.

+ 38739u +300.3
- 22624.' - 2804. - 8072) .
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The real base point IS (u, v) = (2/3, -1/6), which corresponds to the line (w+ 1, 3w+ 1/6, 2w+1/6).

The four complex base points, (0.67336 ± 0.02735i, -0.07294 ± 0.11195i) and (0.69678 ± 0.02251i,

-0.050281= O.13900i) correspond to the pairs of skew complex conjugate lines (w +0.16675 1= O.18781i,

(0.93864 - 0.59824i)w + 0.72700 'f 0.06977i, (0.55461 'f 0.58502i) * w) and (w + 1.45840 + 0.89959i,

(1.26868 + 1.30057i)w +0.09568 +0.80755i, (0.31897 +1.11820i)w), respectively. Since these complex

conjugate lines are skew, no isolated real points are missed by the F4 parametrization here. Also, since

the lines It and h are complex, there are no real conics missed that lie in the planes containing one

of these lines and perpendicular to the other, as was the case in the Fl example. Indeed, if we let u

and/or v approach ±oo in (12), all three of (x, y,z) become infinite. Because of this property it may

be desirable to use the skew complex-line parametrization in the other cases in which it may be used,

namely the F2 and Fs surfaces.

Appendix B

Theorem 1: The polynomial PS1(t) obtained by taking the resultant of i2 and lis factors as

PS1(t) = P27(t)[P3(t)]S[Ps(t)]S, where P3(t) = B"t3+F"t' +D"t +A", the denominator of K(t) and

L(t), and Ps(t) is the numerator of S(t) (Ps(t) = S(t)[P3(t)']).

Proof: This proof was performed through the use of Maple. When expanded out in full, PS1(t)

contains hundreds of thousands of terms, so a direct approach was not possible. Instead, PS1(t) was

shown to be divisible by both [P3(t)]S and [Ps(t))s.

The quantities f2 and lis were expressed in terms of the numerators of Q(t), R(t), and Set), and

the numerator and denominator of K(t). Let K(t) = P2(t)/PS(t), where

P,(t) = -(Lt' +Nt +K)

P3(t) = Bt3+Ft'+Dt+A

(13)

(For brevity in this appendix we drop the double primes on the coefficients All through plJ of f(x", V",

z").) Then we have

Q(t)

R(t)

S(t)

[(Ft' +2m +3A)P,(t) + (Nt +2K)P3(t)JP,(t) Q'
[P3(t)]' - Pg

[(3Bt' +2Ft +D)P,(t) +(2Lt +N)P3(t)]P,(t) R'
[P3(t)], = Pg

= (Gt' + Jt +E)[P,(t)]' + (Pt +O)P,(t)P3(t) +S[P3(t)]' S'
[P3(t)], - Pg
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Then we obtain

i, = {[(I/+ H)P, +M P,]Q" - [(J/+ 2E)P,+ oP,]Q'S' + [(Dt +3A)P, +[(P,]S"'}'"

+ {[(2It +2H)P, +2Mp,]Q'R' - [(2Gt + J)P, +PP,]Q'S'

- [(Jt +2E)P, +OP,]R'S' + [(2Ft +2D)P, +N P,]S"}"y

+ {[(It +H)P, +M P,]R" - [(2Gt + J)P, +PP,]R'S' + [(3Bt +F)P, +LPa]S"'}Y'

9, (-CQ" +HQ" s' - EQ'S" +AS");;'

+ (-3CQ" R' + IQ" s' +2HQ'R's' - JQ'S" - ER'S" +DS"),,'y

+ (-3CQ'R" +2IQ'R'S' - GQ'S" +HR" S' - J R'S', +FS")"y'

+ (-CR" +IR"S' -GR'S" +BS")y' .

With this representation it was possible to take the resultant of j2 and 1Ia with respect to x without

overflowing the memory capabilities of the machine. The resultant could be factored, and [P6(t)]6 was

found to be one of the factors.

The factor [Pa(t)]6 proved to be more difficult to obtain. Mter the factor [P6(t)]6 was removed from

the resultant, the substitution Q. ::;;: PiPa - tR· was used to eliminate Q* from the remaining factor.

This remaining factor was split into 28 terms as follows:

A1R.6 +A2R.sS. + AaR*s + A4R.4S*2 + AsR*4S· + A6R.4 +A7R·3S*a

+ AaR*3 S·2 +AsR*3S* +AlOR*a + All R·2S*4 +A12R*2S·a + A1aR*2 S·2 + A14 R-2SO'

+ AIS R*2 +AI6R-SO's +A17R·S*4 +AlaR·S-a +AI9R·S·2 +A20R*S· + A2l R.

+ A22 S·6 + A2aS·s + A24S.4 + A2S S*a +A26S.2+ A27S* +A28

(15)

The coefficients Ai are functions of A through P, P2, and Pa, and range from 76 terms in the case of

A22 to 1674 terms for As. Thus these coefficients must be omitted here for space considerations. Next

these substitutions were made:

Roo ::;;: M2Pi +N2P2Pa

S· ::;;: MaPi +NaP2Pa+ sPj

Later on these substitutions will be made:

(16)

M, = 3Bt' +2Ft +D

N, = 2Lt+N
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M, = Gt' + Jt +E

N, = Pt+O
(17)



so that the system (16, 17) agrees with the definitions of (13, 14). The reason behind these substitutions

is to express the resultant in terms of Pa as much as possible 50 as to be able to more readily determine

what powers of Pa divide into the coefficients Ai.

Upon making the substitutions in (16), each of the terms AiR-iS...k becomes a term Bi, where the

Bi are functions of A through P, P2 , and Pa- The number of terms in the Bj ranges from 140 for B28

to 48960 for B7 • Each B,. can be regarded as a polynomial in Pa. The highest power of Pa appearing

in any term is pJs, in B28 _ Since we are trying to show that L:f~1 Bj is divisible by P~, we need only

consider the terms of the B j which do not contain any power of Pa greater than or equal to six. That

is,

, ,
let C,. = L:,.=o bjPa _

It turns out that each of the Cj is divisible by pJo, so let

D · - C·/F.'OI - I 2 .

We now make the substitutions

A = Pa - Bta _Ft2 - Dt

J( = -P, - Lt' - Nt

into the terms Di to produce more terms Ej. The latter are now functions of B, C, ... , J, L, M, .. _, P, P2,

and Pa. Each of the Ej turns out to be divisible by Pj. As was the case with the Bj, we remove powers

of Pa greater than or equal to six from the E,._ When we do that, all of the resulting terms are divisible

by P2 • Thus,

if Ej = L:?=2 eiPi ,, .
let F, = (2;,=, b,PD/P, .

(the highest power of Pa appearing in the Ej is 8, in seven of the Ej.)

The sum of all the terms of the Fj is 61170. Since this is less than 216 , all of the Fj can be added

together in Maple to obtain one large expression. This can be expressed as a polynomial in P2 and Pa

as follows:

(GIFt +G,P!] +G3P? +G,P, +G,)pJ +(G,Ft +G,P!f +Gsp? +GsP,)Pj

+(GlOFt +GnP!] +G12P!f)P!f +(GI3Ft +G"P!f)Pl .
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Through the use of Maple we were able to show that each of the four terms enclosed in parentheses in

(18) vanish. The fourth term, (GI3Pt +GI4Pr), was shown to be zero by making the three substitutions

of(17), namely N 2 = 2Lt+N, N3 = Pt+O, and (after simplifying) M3 = Gt2+Jt+E, then determining

that the result was divisible by M2 - 3Bt2 - 2Ft - D. The same procedure worked for the third term

in parentheses in (18), (GIOFt +GIIPf +GI2P:}), and for these combinations: (G611 +G7P?) , GsP:},

G9 P2 , (GIFt +G2P? + G3P?), G4 P2 , and Gs . Thus the expression in (18) vanishes, and since this is

the remainder of the resultant (15) upon division by pff, we conclude that the entire expression (15) is

divisible by P;.•
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