47 research outputs found

    Quantum Reflection of Antihydrogen in the GBAR Experiment

    Full text link
    In the GBAR experiment, cold antihydrogen atoms will be left to fall on an annihilation plate with the aim of measuring the gravitational acceleration of antimatter. Here, we study the quantum reflection of these antiatoms due to the Casimir-Polder potential above the plate. We give realistic estimates of the potential and quantum reflection amplitudes, taking into account the specificities of antihydrogen and the optical properties of the plate. We find that quantum reflection is enhanced for weaker potentials, for example above thin slabs, graphene and nanoporous media.Comment: Workshop on Antimatter and Gravity Bern 2013 Proceeding

    Probing the braneworld hypothesis with a neutron-shining-through-a-wall experiment

    Get PDF
    The possibility for our visible world to be a 3-brane embedded in a multidimensional bulk is at the heart of many theoretical edifices in high-energy physics. Probing the braneworld hypothesis is thus a major experimental challenge. Following recent theoretical works showing that matter swapping between braneworlds can occur, we propose a neutron-shining-through-a-wall experiment. We first show that an intense neutron source such as a nuclear reactor core can induce a hidden neutron flux in an adjacent hidden braneworld. We then describe how a low-background detector can detect neutrons arising from the hidden world and quantify the expected sensitivity to the swapping probability. As a proof of concept, a constraint is derived from previous experiments.Comment: 12 pages, 4 figures, final version published in Physical Review

    Search for passing-through-walls neutrons constrains hidden braneworlds

    Get PDF
    In many theoretical frameworks our visible world is a 33-brane, embedded in a multidimensional bulk, possibly coexisting with hidden braneworlds. Some works have also shown that matter swapping between braneworlds can occur. Here we report the results of an experiment - at the Institut Laue-Langevin (Grenoble, France) - designed to detect thermal neutron swapping to and from another braneworld, thus constraining the probability p2p^2 of such an event. The limit, p<4.6×1010p<4.6\times 10^{-10} at 95%95 \% C.L., is 44 orders of magnitude better than the previous bound based on the disappearance of stored ultracold neutrons. In the simplest braneworld scenario, for two parallel Planck-scale branes separated by a distance dd, we conclude that d>87d>87 in Planck length units.Comment: 5 pages, 3 figures. Published in Physics Letters

    Prospects for studies of the free fall and gravitational quantum states of antimatter

    Get PDF
    Different experiments are ongoing to measure the effect of gravity on cold neutral antimatter atoms such as positronium, muonium and antihydrogen. Among those, the project GBAR in CERN aims to measure precisely the gravitational fall of ultracold antihydrogen atoms. In the ultracold regime, the interaction of antihydrogen atoms with a surface is governed by the phenomenon of quantum reflection which results in bouncing of antihydrogen atoms on matter surfaces. This allows the application of a filtering scheme to increase the precision of the free fall measurement. In the ultimate limit of smallest vertical velocities, antihydrogen atoms are settled in gravitational quantum states in close analogy to ultracold neutrons (UCNs). Positronium is another neutral system involving antimatter for which free fall under gravity is currently being investigated at UCL. Building on the experimental techniques under development for the free fall measurement, gravitational quantum states could also be observed in positronium. In this contribution, we review the status of the ongoing experiments and discuss the prospects of observing gravitational quantum states of antimatter and their implications.Comment: This work reviews contributions made at the GRANIT 2014 workshop on prospects for the observation of the free fall and gravitational quantum states of antimatte

    Status of the GRANIT facility

    Full text link
    The GRANIT facility is a follow-up project, which is motivated by the recent discovery of gravitational quantum states of ultracold neutrons. The goal of the project is to approach the ultimate accuracy in measuring parameters of such quantum states and also to apply this phenomenon and related experimental techniques to a broad range of applications in particle physics as well as in surface and nanoscience studies. We overview the current status of this facility, the recent test measurements and the nearest prospects.Comment: 11 pages, 20 figures, Proceedings of the GRANIT-2014 WORKSHOP "Quantum gravitational spectroscopy with ultracold systems"(Les Houches

    Gravitational and matter-wave spectroscopy of atomic hydrogen at ultra-low energies

    Get PDF
    We propose experiments with atomic hydrogen gas at ultra-low temperatures T <100K when the thermal energy of atoms is comparable with the changes of their potential energy in the Earth gravity field. At these conditions we suggest implementing a gravitational spectroscopy for studies of quantum properties of ultra-cold atomic hydrogen and its interactions with matter and gravity, similar to experiments with ultra-cold neutrons (Nesvizhevsky et al. Nature 415, 297 2002). A magnetic trap used for reaching the Bose-Einstein Condensation (Fried et al. Phys. Rev. Lett. 81, 3811 1998) can be used for cooling a large number of H atoms below 1 mK. Evaporative cooling over the trap barrier allows effective cooling of the vertical degree of freedom of the trapped atoms. Releasing these ultra-slow atoms from the trap onto the cold surface of superfluid helium will allow studies of quantum bounces and stationary gravitational states of H atoms in the potential well created by this surface and the field of Earth gravity. Experimental study of properties of gravitational quantum states of hydrogen and quantum reflection of ultracold hydrogen from surface would be of major importance for designing similar experiments with antihydrogen, which are currently prepared in CERN

    Experimental limits on neutron disappearance into another braneworld

    Get PDF
    Recent theoretical works have shown that matter swapping between two parallel braneworlds could occur under the influence of magnetic vector potentials. In our visible world, galactic magnetism possibly produces a huge magnetic potential. As a consequence, this paper discusses the possibility to observe neutron disappearance into another braneworld in certain circumstances. The setup under consideration involves stored ultracold neutrons - in a vessel - which should exhibit a non-zero probability p to disappear into an invisible brane at each wall collision. An upper limit of p is assessed based on available experimental results. This value is then used to constrain the parameters of the theoretical model. Possible improvements of the experiments are discussed, including enhanced stimulated swapping by artificial means.Comment: 7 pages, 2 figures, 1 table. Published in Physics Letters

    Casimir interaction between a dielectric nanosphere and a metallic plane

    Full text link
    We study the Casimir interaction between a dielectric nanosphere and a metallic plane, using the multiple scattering theory. Exact results are obtained with the dielectric described by a Sellmeier model and the metal by a Drude model. Asymptotic forms are discussed for small spheres, large or small distances. The well-known Casimir-Polder formula is recovered at the limit of vanishingly small spheres, while an expression better behaved at small distances is found for any finite value of the radius. The exact results are of particular interest for the study of quantum states of nanospheres in the vicinity of surfaces.Comment: 6 pages, 5 figure
    corecore