43 research outputs found

    The 2017 EULAR standardised procedures for ultrasound imaging in rheumatology

    Get PDF
    BACKGROUND: In 2001, the European League Against Rheumatism developed and disseminated the first guidelines for musculoskeletal (MS) ultrasound (US) in rheumatology. Fifteen years later, the dramatic expansion of new data on MSUS in the literature coupled with technological developments in US imaging has necessitated an update of these guidelines.OBJECTIVES: To update the existing MSUS guidelines in rheumatology as well as to extend their scope to other anatomic structures relevant for rheumatology.METHODS: The project consisted of the following steps: (1) a systematic literature review of MSUS evaluable structures; (2) a Delphi survey among rheumatologist and radiologist experts in MSUS to select MS and non-MS anatomic structures evaluable by US that are relevant to rheumatology, to select abnormalities evaluable by US and to prioritise these pathologies for rheumatology and (3) a nominal group technique to achieve consensus on the US scanning procedures and to produce an electronic illustrated manual (ie, App of these procedures).RESULTS: Structures from nine MS and non-MS areas (ie, shoulder, elbow, wrist and hand, hip, knee, ankle and foot, peripheral nerves, salivary glands and vessels) were selected for MSUS in rheumatic and musculoskeletal diseases (RMD) and their detailed scanning procedures (ie, patient position, probe placement, scanning method and bony/other landmarks) were used to produce the App. In addition, US evaluable abnormalities present in RMD for each anatomic structure and their relevance for rheumatology were agreed on by the MSUS experts.CONCLUSIONS: This task force has produced a consensus-based comprehensive and practical framework on standardised procedures for MSUS imaging in rheumatology

    Transcriptome Alteration in the Diabetic Heart by Rosiglitazone: Implications for Cardiovascular Mortality

    Get PDF
    BACKGROUND: Recently, the type 2 diabetes medication, rosiglitazone, has come under scrutiny for possibly increasing the risk of cardiac disease and death. To investigate the effects of rosiglitazone on the diabetic heart, we performed cardiac transcriptional profiling and imaging studies of a murine model of type 2 diabetes, the C57BL/KLS-lepr(db)/lepr(db) (db/db) mouse. METHODS AND FINDINGS: We compared cardiac gene expression profiles from three groups: untreated db/db mice, db/db mice after rosiglitazone treatment, and non-diabetic db/+ mice. Prior to sacrifice, we also performed cardiac magnetic resonance (CMR) and echocardiography. As expected, overall the db/db gene expression signature was markedly different from control, but to our surprise was not significantly reversed with rosiglitazone. In particular, we have uncovered a number of rosiglitazone modulated genes and pathways that may play a role in the pathophysiology of the increase in cardiac mortality as seen in several recent meta-analyses. Specifically, the cumulative upregulation of (1) a matrix metalloproteinase gene that has previously been implicated in plaque rupture, (2) potassium channel genes involved in membrane potential maintenance and action potential generation, and (3) sphingolipid and ceramide metabolism-related genes, together give cause for concern over rosiglitazone's safety. Lastly, in vivo imaging studies revealed minimal differences between rosiglitazone-treated and untreated db/db mouse hearts, indicating that rosiglitazone's effects on gene expression in the heart do not immediately turn into detectable gross functional changes. CONCLUSIONS: This study maps the genomic expression patterns in the hearts of the db/db murine model of diabetes and illustrates the impact of rosiglitazone on these patterns. The db/db gene expression signature was markedly different from control, and was not reversed with rosiglitazone. A smaller number of unique and interesting changes in gene expression were noted with rosiglitazone treatment. Further study of these genes and molecular pathways will provide important insights into the cardiac decompensation associated with both diabetes and rosiglitazone treatment

    Disposable sensors in diagnostics, food and environmental monitoring

    Get PDF
    Disposable sensors are low‐cost and easy‐to‐use sensing devices intended for short‐term or rapid single‐point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource‐limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo‐ and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low‐cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities
    corecore