1,148 research outputs found
Phase field analysis of eutectic breakdown.
In this paper an isotropic multi-phase-field model is extended to include the effects of anisotropy and the spontaneous nucleation of an absent phase. This model is derived and compared against a published single phase model. Results from this model are compared against results from other multi-phase models, additionally this model is used to examine the break down of a regular two dimensional eutectic into a single phase dendritic front
Phase Field Modeling of Fracture and Stress Induced Phase Transitions
We present a continuum theory to describe elastically induced phase
transitions between coherent solid phases. In the limit of vanishing elastic
constants in one of the phases, the model can be used to describe fracture on
the basis of the late stage of the Asaro-Tiller-Grinfeld instability. Starting
from a sharp interface formulation we derive the elastic equations and the
dissipative interface kinetics. We develop a phase field model to simulate
these processes numerically; in the sharp interface limit, it reproduces the
desired equations of motion and boundary conditions. We perform large scale
simulations of fracture processes to eliminate finite-size effects and compare
the results to a recently developed sharp interface method. Details of the
numerical simulations are explained, and the generalization to multiphase
simulations is presented
Relationship between solidification microstructure and hot cracking susceptibility for continuous casting of low-carbon and high-strength low-alloyed steels: A phase-field study
© The Minerals, Metals & Materials Society and ASM International 2013Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior. © 2013 The Minerals, Metals & Materials Society and ASM International
Phase-field approach to heterogeneous nucleation
We consider the problem of heterogeneous nucleation and growth. The system is
described by a phase field model in which the temperature is included through
thermal noise. We show that this phase field approach is suitable to describe
homogeneous as well as heterogeneous nucleation starting from several general
hypotheses. Thus we can investigate the influence of grain boundaries,
localized impurities, or any general kind of imperfections in a systematic way.
We also put forward the applicability of our model to study other physical
situations such as island formation, amorphous crystallization, or
recrystallization.Comment: 8 pages including 7 figures. Accepted for publication in Physical
Review
Differential Regulation of the Period Genes in Striatal Regions following Cocaine Exposure
Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc) and Caudate Putamen (CP), regions of the brain known to be involved in the behavioral responses to drugs of abuse. Moreover, we wanted to explore the mechanism by which these genes are regulated following cocaine exposure. Here we find that after repeated cocaine exposure, expression of the Period (Per) genes and Neuronal PAS Domain Protein 2 (Npas2) are elevated, in a somewhat regionally selective fashion. Moreover, NPAS2 (but not CLOCK (Circadian Locomotor Output Cycles Kaput)) protein binding at Per gene promoters was enhanced following cocaine treatment. Mice lacking a functional Npas2 gene failed to exhibit any induction of Per gene expression after cocaine, suggesting that NPAS2 is necessary for this cocaine-induced regulation. Examination of Per gene and Npas2 expression over twenty-four hours identified changes in diurnal rhythmicity of these genes following chronic cocaine, which were regionally specific. Taken together, these studies point to selective disruptions in Per gene rhythmicity in striatial regions following chronic cocaine treatment, which are mediated primarily by NPAS2. © 2013 Falcon et al
A Toxicogenomics Approach to Identify New Plausible Epigenetic Mechanisms of Ochratoxin A Carcinogenicity in Rat
Ochratoxin A (OTA) is a mycotoxin occurring naturally in a wide range of food commodities. In animals, it has been shown to cause a variety of adverse effects, nephrocarcinogenicity being the most prominent. Because of its high toxic potency and the continuous exposure of the human population, OTA has raised public health concerns. There is significant debate on how to use the rat carcinogenicity data to assess the potential risk to humans. In this context, the question of the mechanism of action of OTA appears of key importance and was studied through the application of a toxicogenomics approach. Male Fischer rats were fed OTA for up to 2 years. Renal tumors were discovered during the last 6 months of the study. The total tumor incidence reached 25% at the end of the study. Gene expression profile was analyzed in groups of animals taken in intervals from 7 days to 12 months. Tissue-specific responses were observed in kidney versus liver. For selected genes, microarray data were confirmed at both mRNA and protein levels. In kidney, several genes known as markers of kidney injury and cell regeneration were significantly modulated by OTA. The expression of genes known to be involved in DNA synthesis and repair, or genes induced as a result of DNA damage, was only marginally modulated. Very little or no effect was found amongst genes associated with apoptosis. Alterations of gene expression indicating effects on calcium homeostasis and a disruption of pathways regulated by the transcription factors hepatocyte nuclear factor 4 alpha (HNF4α) and nuclear factor-erythroid 2-related factor 2 (Nrf2) were observed in the kidney but not in the liver. Previous data have suggested that a reduction in HNF4α may be associated with nephrocarcinogenicity. Many Nrf2-regulated genes are involved in chemical detoxication and antioxidant defense. The depletion of these genes is likely to impair the defense potential of the cells, resulting in chronic elevation of oxidative stress in the kidney. The inhibition of defense mechanism appears as a highly plausible new mechanism, which could contribute to OTA carcinogenicit
Early life programming and neurodevelopmental disorders.
For more than a century, clinical investigators have focused on early life as a source of adult psychopathology. Early theories about psychic conflict and toxic parenting have been replaced by more recent formulations of complex interactions of genes and environment. Although the hypothesized mechanisms have evolved, a central notion remains: early life is a period of unique sensitivity during which experience confers enduring effects. The mechanisms for these effects remain almost as much a mystery today as they were a century ago. Recent studies suggest that maternal diet can program offspring growth and metabolic pathways, altering lifelong susceptibility to diabetes and obesity. If maternal psychosocial experience has similar programming effects on the developing offspring, one might expect a comparable contribution to neurodevelopmental disorders, including affective disorders, schizophrenia, autism, and eating disorders. Due to their early onset, prevalence, and chronicity, some of these disorders, such as depression and schizophrenia, are among the highest causes of disability worldwide according to the World Health Organization 2002 report. Consideration of the early life programming and transcriptional regulation in adult exposures supports a critical need to understand epigenetic mechanisms as a critical determinant in disease predisposition. Incorporating the latest insight gained from clinical and epidemiological studies with potential epigenetic mechanisms from basic research, the following review summarizes findings from a workshop on Early Life Programming and Neurodevelopmental Disorders held at the University of Pennsylvania in 2009
Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model
Several firing patterns experimentally observed in neural populations have
been successfully correlated to animal behavior. Population bursting, hereby
regarded as a period of high firing rate followed by a period of quiescence, is
typically observed in groups of neurons during behavior. Biophysical
membrane-potential models of single cell bursting involve at least three
equations. Extending such models to study the collective behavior of neural
populations involves thousands of equations and can be very expensive
computationally. For this reason, low dimensional population models that
capture biophysical aspects of networks are needed.
\noindent The present paper uses a firing-rate model to study mechanisms that
trigger and stop transitions between tonic and phasic population firing. These
mechanisms are captured through a two-dimensional system, which can potentially
be extended to include interactions between different areas of the nervous
system with a small number of equations. The typical behavior of midbrain
dopaminergic neurons in the rodent is used as an example to illustrate and
interpret our results.
\noindent The model presented here can be used as a building block to study
interactions between networks of neurons. This theoretical approach may help
contextualize and understand the factors involved in regulating burst firing in
populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded
as separate file
Eight common genetic variants associated with serum dheas levels suggest a key role in ageing mechanisms
Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands-yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10-36), SULT2A1 (rs2637125; p = 2.61×10-19), ARPC1A (rs740160; p = 1.56×10-16), TRIM4 (rs17277546; p = 4.50×10-11), BMF (rs7181230; p = 5.44×10-11), HHEX (rs2497306; p = 4.64×10-9), BCL2L11 (rs6738028; p = 1.72×10-8), and CYP2C9 (rs2185570; p = 2.29×10-8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS
Pioglitazone administration alters ovarian gene expression in aging obese lethal yellow mice
<p>Abstract</p> <p>Background</p> <p>Women with polycystic ovary syndrome (PCOS) are often treated with insulin-sensitizing agents, e.g. thiazolidinediones (TZD), which have been shown to reduce androgen levels and improved ovulatory function. Acting via peroxisome proliferator-activated receptor (PPAR) gamma, TZD alter the expression of a large variety of genes. Lethal yellow (LY; C57BL/6J Ay/a) mice, possessing a mutation (Ay) in the agouti gene locus, exhibit progressive obesity, reproductive dysfunction, and altered metabolic regulation similar to women with PCOS. The current study was designed to test the hypothesis that prolonged treatment of aging LY mice with the TZD, pioglitazone, alters the ovarian expression of genes that may impact reproduction.</p> <p>Methods</p> <p>Female LY mice received daily oral doses of either 0.01 mg pioglitazone (n = 4) or an equal volume of vehicle (DMSO; n = 4) for 8 weeks. At the end of treatment, ovaries were removed and DNA microarrays were used to analyze differential gene expression.</p> <p>Results</p> <p>Twenty-seven genes showed at least a two-fold difference in ovarian expression with pioglitazone treatment. These included leptin, angiopoietin, angiopoietin-like 4, Foxa3, PGE1 receptor, resistin-like molecule-alpha (RELM), and actin-related protein 6 homolog (ARP6). For most altered genes, pioglitazone changed levels of expression to those seen in untreated C57BL/6J(a/a) non-mutant lean mice.</p> <p>Conclusion</p> <p>TZD administration may influence ovarian function via numerous diverse mechanisms that may or may not be directly related to insulin/IGF signaling.</p
- …