52 research outputs found

    Depression and loneliness in Jamaicans with sickle cell disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sickle cell disease (SCD) is the commonest genetic disorder in Jamaica, and has life-long implications for those afflicted with it. It is well known that depression and loneliness may exist in those with chronic diseases, but the coexistence of depression and loneliness in people with sickle cell disease is not clear. The aim of this study is to determine the prevalence of and factors associated with depression and loneliness in the Jamaica Sickle Cell Cohort Study and its age and sex matched controls.</p> <p>Methods</p> <p>277 patients with SCD and 65 controls were administered a questionnaire that studied demographics, disease severity, depression, and loneliness. Regression analyses were done to examine relationships between outcomes and associated variables.</p> <p>Results</p> <p>Depression was found in 21.6% of patients and 9.4% in controls. Loneliness scores were also significantly higher in patients (16.9 ± 5.1) than in controls (14.95 ± 4.69). Depression was significantly associated with unemployment [OR = 2.9, p-value: < 0.001], whereas unemployment (p-value: 0.002), and lower educational attainment were significantly associated with loneliness.</p> <p>In patients with SCD, depression was significantly associated with being unemployed (OR 2.4, 95% CI 1.2,4.6, p-value:0.01), presence of a leg ulcer (OR = 3.8, 95% CI: 1.7, 8.4, p-value: 0.001), frequent visits (OR = 3.3, 95% CI: 1.2, 8.9, p-value: 0.019), and frequent painful crises (OR = 2.5, 95% CI: 1.1, 5.8, p-value: 0.035). Not being employed (Coef.: 2.0; p-value: 0.004) and higher educational attainment (tertiary vs. primary education, Coef.: -5.5; p-value: < 0.001) were significant associations with loneliness after adjusting for genotype.</p> <p>Conclusions</p> <p>Health workers need to actively look for and manage these problems to optimize their patients' total biopsychosocial care.</p

    Cognitive Bias in Ambiguity Judgements:Using Computational Models to Dissect the Effects of Mild Mood Manipulation in Humans

    Get PDF
    Positive and negative moods can be treated as prior expectations over future delivery of rewards and punishments. This provides an inferential foundation for the cognitive (judgement) bias task, now widely-used for assessing affective states in non-human animals. In the task, information about affect is extracted from the optimistic or pessimistic manner in which participants resolve ambiguities in sensory input. Here, we report a novel variant of the task aimed at dissecting the effects of affect manipulations on perceptual and value computations for decision-making under ambiguity in humans. Participants were instructed to judge which way a Gabor patch (250ms presentation) was leaning. If the stimulus leant one way (e.g. left), pressing the REWard key yielded a monetary WIN whilst pressing the SAFE key failed to acquire the WIN. If it leant the other way (e.g. right), pressing the SAFE key avoided a LOSS whilst pressing the REWard key incurred the LOSS. The size (0-100 UK pence) of the offered WIN and threatened LOSS, and the ambiguity of the stimulus (vertical being completely ambiguous) were varied on a trial-by-trial basis, allowing us to investigate how decisions were affected by differing combinations of these factors. Half the subjects performed the task in a 'Pleasantly' decorated room and were given a gift (bag of sweets) prior to starting, whilst the other half were in a bare 'Unpleasant' room and were not given anything. Although these treatments had little effect on self-reported mood, they did lead to differences in decision-making. All subjects were risk averse under ambiguity, consistent with the notion of loss aversion. Analysis using a Bayesian decision model indicated that Unpleasant Room subjects were ('pessimistically') biased towards choosing the SAFE key under ambiguity, but also weighed WINS more heavily than LOSSes compared to Pleasant Room subjects. These apparently contradictory findings may be explained by the influence of affect on different processes underlying decision-making, and the task presented here offers opportunities for further dissecting such processes

    Thermal niche evolution and geographical range expansion in a species complex of western Mediterranean diving beetles

    Get PDF
    [Background] Species thermal requirements are one of the principal determinants of their ecology and biogeography, although our understanding of the interplay between these factors is limited by the paucity of integrative empirical studies. Here we use empirically collected thermal tolerance data in combination with molecular phylogenetics/phylogeography and ecological niche modelling to study the evolution of a clade of three western Mediterranean diving beetles, the Agabus brunneus complex.[Results] The preferred mitochondrial DNA topology recovered A. ramblae (North Africa, east Iberia and Balearic islands) as paraphyletic, with A. brunneus (widespread in the southwestern Mediterranean) and A. rufulus (Corsica and Sardinia) nested within it, with an estimated origin between 0.60-0.25 Ma. All three species were, however, recovered as monophyletic using nuclear DNA markers. A Bayesian skyline plot suggested demographic expansion in the clade at the onset of the last glacial cycle. The species thermal tolerances differ significantly, with A. brunneus able to tolerate lower temperatures than the other taxa. The climatic niche of the three species also differs, with A. ramblae occupying more arid and seasonal areas, with a higher minimum temperature in the coldest month. The estimated potential distribution for both A. brunneus and A. ramblae was most restricted in the last interglacial, becoming increasingly wider through the last glacial and the Holocene.[Conclusions] The A. brunneus complex diversified in the late Pleistocene, most likely in south Iberia after colonization from Morocco. Insular forms did not differentiate substantially in morphology or ecology, but A. brunneus evolved a wider tolerance to cold, which appeared to have facilitated its geographic expansion. Both A. brunneus and A. ramblae expanded their ranges during the last glacial, although they have not occupied areas beyond their LGM potential distribution except for isolated populations of A. brunneus in France and England. On the islands and possibly Tunisia secondary contact between A. brunneus and A. ramblae or A. rufulus has resulted in introgression. Our work highlights the complex dynamics of speciation and range expansions within southern areas during the last glacial cycle, and points to the often neglected role of North Africa as a source of European biodiversity.This work was supported by an FPI grant to AH-G and projects CGL2007-61665 and CGL2010-15755 from the Spanish government to IR. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe

    Human Organisms from an Evolutionary Perspective: Its Significance for Medicine

    Get PDF
    Defenders of evolutionary medicine claim that medical professionals and public health officials would do well to consider the role of evolutionary biology with respect to the teaching, research, and judgments pertaining to medical theory and practice. An integral part of their argument is that the human body should be understood as a bundle of evolutionary compromises. Such an appreciation, which includes a proper understanding of biological function and physiological homeostasis, would provide a crucial perspective regarding the understanding and securing of human health needs currently lacking in the medical arena

    Biomarkers of a five-domain translational substrate for schizophrenia and schizoaffective psychosis

    Get PDF

    Radiation, Ecology and the Invalid LNT Model: The Evolutionary Imperative

    Get PDF
    Metabolic and energetic efficiency, and hence fitness of organisms to survive, should be maximal in their habitats. This tenet of evolutionary biology invalidates the linear-nothreshold (LNT) model for the risk consequences of environmental agents. Hormesis in response to selection for maximum metabolic and energetic efficiency, or minimum metabolic imbalance, to adapt to a stressed world dominated by oxidative stress should therefore be universal. Radiation hormetic zones extending substantially beyond common background levels, can be explained by metabolic interactions among multiple abiotic stresses. Demographic and experimental data are mainly in accord with this expectation. Therefore, non-linearity becomes the primary model for assessing risks from low-dose ionizing radiation. This is the evolutionary imperative upon which risk assessment for radiation should be based
    corecore