12 research outputs found
The role of Ataxin-2 in metabolism and disease
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative movement disorder caused by expansion of CAG repeats in the ATXN2 gene beyond 33 units, while healthy individuals carry 22-23 repeats. First symptoms of SCA2 include uncoordinated movement, ataxic gait and slowing of the saccadic eye movements in line with the early pronounced atrophy of cerebellum, spinal cord and brainstem. Cerebellar Purkinje cells and spinal cord motor neurons are the most affected cells from ATXN2 expansions. Later on, patients manifest distal amyotrophy, problems in breathing and swallowing, depression and cognitive decline caused by widespread degeneration throughout the brain. The striking loss of mass in the brain, due to severe myelin fat atrophy, is accompanied by a similar reduction in the peripheral fat stores. After the devastating progression of disease, the severity and duration of which depends on the CAG repeat size, genetic background and environmental factors, patients succumb to SCA2 mostly because of respiratory failure at the terminal stage. Larger repeat sizes lead to an earlier manifestation of the disease and a more rapid progression. Aside from SCA2, intermediate-length and short pathogenic CAG expansions in ATXN2 between 26-39 repeats significantly increase the risk of developing other neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), fronto-temporal lobar dementia (FTLD) or Parkinson plus tauopathies like progressive supranuclear palsy (PSP) in various cohorts across the world.
Ataxin-2 (ATXN2) is a ubiquitously expressed cytosolic protein most famous for its involvement in neurodegenerative disease caused by the expanded poly-glutamine (polyQ) domain corresponding to a genomic (CAG)n tract. This N-terminal polyQ domain has no known function, other than increasing the aggregation propensity of mutant ATXN2 and facilitating interaction with other polyQ containing proteins, leading to their sequestration. The progressive accumulation of ATXN2 into cytosolic foci, and also that of its interaction partners over time, underlies the molecular pathomechanism. Next to polyQ domain, ATXN2 also contains a Like-Sm domain (Lsm), an Lsm-associated domain (LsmAD), multiple proline-rich domains (PRD) and a Poly(A)-Binding-Protein (PABP)-interacting motif (PAM2).
Through its Lsm/LsmAD domains, ATXN2 directly binds to a large number of transcripts, regulating their quality and translation rate. In a similar fashion, through its direct interaction with PABP via PAM2 motif, ATXN2 indirectly modifies the fate of even larger number of transcripts and global translation. Several PRDs scattered across the protein help ATXN2 associate with growth factor receptors and other endocytosis factors, modulating nutrient uptake and downstream signaling.
ATXN2 is a stress response factor. Therefore, its involvement in nutrient uptake plays a crucial part in cell’s capability to overcome non-permissive conditions. Upon nutrient deprivation, oxidative stress, proteotoxicity, heat stress or Ca2+ imbalance, ATXN2 relocalizes into cytosolic ribonucleoprotein particles known as stress granules (SGs), together with PABP, several eukaryotic translation initiation factors, many other RNA-binding proteins (RBP) with their target transcripts and the small ribosomal subunit. Collectively, they modulate the stability of the trapped transcripts, favoring the maturation and translation of IRES-dependent stress response proteins instead, according to the specific need. Many RBPs interact either directly or in an RNA-dependent manner in the SGs, and due to the large number of ALS-causing mutations identified in them (such as TDP-43, FUS, TIA-1, hnRNPA2/B1), SGs became a hot topic in neuropathology. Acute SGs serve to halt translation and growth, and to spend energy only for survival until stress disappears. However, chronic SG assembly eventually activates apoptotis leading to cell death. While the polyQ expansions in ATXN2 enhance SG stability, reduce their dissociation rate after stress, and lead to aberrant post-translational modifications of other SG components like TDP-43, complete loss of ATXN2 delays SG formation and results in easily dissolvable foci.
Most of the stressors that induce SG formation eventually converge on energetic deficit. Therefore, it is logical that the ultimate task of SGs is to stop further growth when it cannot be afforded. In yeast, the molecular mechanism underlying this growth arrest was explained as sequestration of the master growth regulator complex, Target-of-Rapamycin Complex 1 (TORC1), into SGs in an ATXN2-dependent manner. The repressor effect of ATXN2 on mammalian TORC1 (mTORC1) and global protein translation had already been documented in earlier studies; complete loss of ATXN2 function in knock-out mouse (Atxn2-KO) resulted in mTORC1 hyperactivity and transcriptional upregulation of multiple ribosomal subunits indicating an increased need for these machines. ..
Mid-gestation lethality of Atxn2l-ablated mice
Depletion of yeast/fly Ataxin-2 rescues TDP-43 overexpression toxicity. In mouse models of Amyotrophic Lateral Sclerosis via TDP-43 overexpression, depletion of its ortholog ATXN2 mitigated motor neuron degeneration and extended lifespan from 25 days to >300 days. There is another ortholog in mammals, named ATXN2L (Ataxin-2-like), which is almost uncharacterized but also functions in RNA surveillance at stress granules. We generated mice with Crispr/Cas9-mediated deletion of Atxn2l exons 5-8, studying homozygotes prenatally and heterozygotes during aging. Our novel findings indicate that ATXN2L absence triggers mid-gestational embryonic lethality, affecting female animals more strongly. Weight and development stages of homozygous mutants were reduced. Placenta phenotypes were not apparent, but brain histology showed lamination defects and apoptosis. Aged heterozygotes showed no locomotor deficits or weight loss over 12 months. Null mutants in vivo displayed compensatory efforts to maximize Atxn2l expression, which were prevented upon nutrient abundance in vitro. Mouse embryonal fibroblast cells revealed more multinucleated giant cells upon ATXN2L deficiency. In addition, in human neural cells, transcript levels of ATXN2L were induced upon starvation and glucose and amino acids exposure, but this induction was partially prevented by serum or low cholesterol administration. Neither ATXN2L depletion triggered dysregulation of ATXN2, nor a converse effect was observed. Overall, this essential role of ATXN2L for embryogenesis raises questions about its role in neurodegenerative diseases and neuroprotective therapies
In human and mouse spino-cerebellar tissue, ataxin-2 expansion affects ceramide-sphingomyelin metabolism
Ataxin-2 (human gene symbol ATXN2) acts during stress responses, modulating mRNA translation and nutrient metabolism. Ataxin-2 knockout mice exhibit progressive obesity, dyslipidemia, and insulin resistance. Conversely, the progressive ATXN2 gain of function due to the fact of polyglutamine (polyQ) expansions leads to a dominantly inherited neurodegenerative process named spinocerebellar ataxia type 2 (SCA2) with early adipose tissue loss and late muscle atrophy. We tried to understand lipid dysregulation in a SCA2 patient brain and in an authentic mouse model. Thin layer chromatography of a patient cerebellum was compared to the lipid metabolome of Atxn2-CAG100-Knockin (KIN) mouse spinocerebellar tissue. The human pathology caused deficits of sulfatide, galactosylceramide, cholesterol, C22/24-sphingomyelin, and gangliosides GM1a/GD1b despite quite normal levels of C18-sphingomyelin. Cerebellum and spinal cord from the KIN mouse showed a consistent decrease of various ceramides with a significant elevation of sphingosine in the more severely affected spinal cord. Deficiency of C24/26-sphingomyelins contrasted with excess C18/20-sphingomyelin. Spinocerebellar expression profiling revealed consistent reductions of CERS protein isoforms, Sptlc2 and Smpd3, but upregulation of Cers2 mRNA, as prominent anomalies in the ceramide–sphingosine metabolism. Reduction of Asah2 mRNA correlated to deficient S1P levels. In addition, downregulations for the elongase Elovl1, Elovl4, Elovl5 mRNAs and ELOVL4 protein explain the deficit of very long-chain sphingomyelin. Reduced ASMase protein levels correlated to the accumulation of long-chain sphingomyelin. Overall, a deficit of myelin lipids was prominent in SCA2 nervous tissue at prefinal stage and not compensated by transcriptional adaptation of several metabolic enzymes. Myelination is controlled by mTORC1 signals; thus, our human and murine observations are in agreement with the known role of ATXN2 yeast, nematode, and mouse orthologs as mTORC1 inhibitors and autophagy promoters
Systematic surveys of iron homeostasis mechanisms reveal ferritin superfamily and nucleotide surveillance regulation to be modified by PINK1 absence
Iron deprivation activates mitophagy and extends lifespan in nematodes. In patients suffering from Parkinson’s disease (PD), PINK1-PRKN mutations via deficient mitophagy trigger iron accumulation and reduce lifespan. To evaluate molecular effects of iron chelator drugs as a potential PD therapy, we assessed fibroblasts by global proteome profiles and targeted transcript analyses. In mouse cells, iron shortage decreased protein abundance for iron-binding nucleotide metabolism enzymes (prominently XDH and ferritin homolog RRM2). It also decreased the expression of factors with a role for nucleotide surveillance, which associate with iron-sulfur-clusters (ISC), and are important for growth and survival. This widespread effect included prominently Nthl1-Ppat-Bdh2, but also mitochondrial Glrx5-Nfu1-Bola1, cytosolic Aco1-Abce1-Tyw5, and nuclear Dna2-Elp3-Pold1-Prim2. Incidentally, upregulated Pink1-Prkn levels explained mitophagy induction, the downregulated expression of Slc25a28 suggested it to function in iron export. The impact of PINK1 mutations in mouse and patient cells was pronounced only after iron overload, causing hyperreactive expression of ribosomal surveillance factor Abce1 and of ferritin, despite ferritin translation being repressed by IRP1. This misregulation might be explained by the deficiency of the ISC-biogenesis factor GLRX5. Our systematic survey suggests mitochondrial ISC-biogenesis and post-transcriptional iron regulation to be important in the decision, whether organisms undergo PD pathogenesis or healthy aging
Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels
Ataxin-2 (ATXN2) polyglutamine domain expansions of large size result in an autosomal dominantly inherited multi-system-atrophy of the nervous system named spinocerebellar ataxia type 2 (SCA2), while expansions of intermediate size act as polygenic risk factors for motor neuron disease (ALS and FTLD) and perhaps also for Levodopa-responsive Parkinson's disease (PD)
Mouse Ataxin-2 expansion downregulates CamKII and other calcium signaling factors, impairing granule—Purkinje neuron synaptic strength
Spinocerebellar ataxia type 2 (SCA2) is caused by polyglutamine expansion in Ataxin-2 (ATXN2). This factor binds RNA/proteins to modify metabolism after stress, and to control calcium (Ca2+) homeostasis after stimuli. Cerebellar ataxias and corticospinal motor neuron degeneration are determined by gain/loss in ATXN2 function, so we aimed to identify key molecules in this atrophic process, as potential disease progression markers. Our Atxn2-CAG100-Knock-In mouse faithfully models features observed in patients at pre-onset, early and terminal stages. Here, its cerebellar global RNA profiling revealed downregulation of signaling cascades to precede motor deficits. Validation work at mRNA/protein level defined alterations that were independent of constant physiological ATXN2 functions, but specific for RNA/aggregation toxicity, and progressive across the short lifespan. The earliest changes were detected at three months among Ca2+ channels/transporters (Itpr1, Ryr3, Atp2a2, Atp2a3, Trpc3), IP3 metabolism (Plcg1, Inpp5a, Itpka), and Ca2+-Calmodulin dependent kinases (Camk2a, Camk4). CaMKIV–Sam68 control over alternative splicing of Nrxn1, an adhesion component of glutamatergic synapses between granule and Purkinje neurons, was found to be affected. Systematic screening of pre/post-synapse components, with dendrite morphology assessment, suggested early impairment of CamKIIα abundance together with the weakening of parallel fiber connectivity. These data reveal molecular changes due to ATXN2 pathology, primarily impacting excitability and communication
Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion mutations in the ATXN2 gene, mainly affecting motor neurons in the spinal cord and Purkinje neurons in the cerebellum. While the large expansions were shown to cause SCA2, the intermediate length expansions lead to increased risk for several atrophic processes including amyotrophic lateral sclerosis and Parkinson variants, e.g. progressive supranuclear palsy. Intense efforts to pioneer a neuroprotective therapy for SCA2 require longitudinal monitoring of patients and identification of crucial molecular pathways. The ataxin-2 (ATXN2) protein is mainly involved in RNA translation control and regulation of nutrient metabolism during stress periods. The preferential mRNA targets of ATXN2 are yet to be determined. In order to understand the molecular disease mechanism throughout different prognostic stages, we generated an Atxn2-CAG100-knock-in (KIN) mouse model of SCA2 with intact murine ATXN2 expression regulation. Its characterization revealed somatic mosaicism of the expansion, with shortened lifespan, a progressive spatio-temporal pattern of pathology with subsequent phenotypes, and anomalies of brain metabolites such as N-acetylaspartate (NAA), all of which mirror faithfully the findings in SCA2 patients. Novel molecular analyses from stages before the onset of motor deficits revealed a strong selective effect of ATXN2 on Nat8l mRNA which encodes the enzyme responsible for NAA synthesis. This metabolite is a prominent energy store of the brain and a well-established marker for neuronal health. Overall, we present a novel authentic rodent model of SCA2, where in vivo magnetic resonance imaging was feasible to monitor progression and where the definition of earliest transcriptional abnormalities was possible. We believe that this model will not only reveal crucial insights regarding the pathomechanism of SCA2 and other ATXN2-associated disorders, but will also aid in developing gene-targeted therapies and disease prevention
Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression
International audienceLarge polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies
The distinct genetic pattern of ALS in Turkey and novel mutations
The frequency of amyotrophic lateral sclerosis (ALS) mutations has been extensively investigated in several populations; however, a systematic analysis in Turkish cases has not been reported so far. In this study, we screened 477 ALS patients for mutations, including 116 familial ALS patients from 82 families and 361 sporadic ALS (sALS) cases. Patients were genotyped for C9orf72 (18.3%), SOD1 (12.2%), FUS (5%), TARDBP (3.7%), and UBQLN2 (2.4%) gene mutations, which together account for approximately 40% of familial ALS in Turkey. No SOD1 mutations were detected in sALS patients; however, C9orf72 (3.1%) and UBQLN2 (0.6%) explained 3.7% of sALS in the population. Exome sequencing revealed mutations in OPTN, SPG11, DJ1, PLEKHG5, SYNE1, TRPM7, and SQSTM1 genes, many of them novel. The spectrum of mutations reflect both the distinct genetic background and the heterogeneous nature of the Turkish ALS population. (C) 2015 Elsevier Inc. All rights reserved