20 research outputs found

    Probing orographic controls in the Himalayas during the monsoon using satellite imagery

    No full text
    The linkages between the space-time variability of observed clouds, rainfall, large-circulation patterns and topography in northern India and the Himalayas were investigated using remote sensing data. The research purpose was to test the hypothesis that cloudiness patterns are dynamic tracers of rainstorms, and therefore their temporal and spatial evolution can be used as a proxy of the spatial and temporal organization of precipitation and precipitation processes in the Himalayan range during the monsoon. The results suggest that the space-time distribution of precipitation, the spatial variability of the diurnal cycle of convective activity, and the terrain (landform and altitudinal gradients) are intertwined at spatial scales ranging from the order of a few kms (1–5km) up to the continental-scale. Furthermore, this relationship is equally strong in the time domain with respect to the onset and intra-seasonal variability of the monsoon. Infrared and microwave imagery of cloud fields were analyzed to characterize the spatial and temporal evolution of mesoscale convective weather systems and short-lived convection in Northern India, the Himalayan range, and in the Tibetan Plateau during three monsoon seasons (1999, 2000 and 2001). The life cycle of convective systems suggests landform and orographic controls consistent with a convergence zone constrained to the valley of the Ganges and the Himalayan range, bounded in the west by the Aravalli range and the Garhwal mountains and in the East by the Khasi Hills and the Bay of Bengal, which we call the Northern India Convergence Zone (NICZ). The NICZ exhibits strong night-time activity along the south-facing slopes of the Himalayan range, which is characterized by the development of short-lived convection (1–3h) aligned with protruding ridges between 1:00 and 3:00 AM. The intra-annual and inter-annual variability of convective activity in the NICZ were assessed with respect to large-scale synoptic conditions, monsoon activity in the Bay of Bengal, and the modulating role of orography. Empirical orthogonal function (EOF) and canonical correlation (CC) analysis suggest that joint modes of variability of monsoon weather and topography, which we call orographic land-atmosphere interactions, modulate the space-time variability of cloudiness in the region. Finally, scaling analysis of cloudiness suggests three different scaling regimes of orographic land-atmosphere interactions: 1) a synoptic-scale regime (≥70-80km); 2) an orographic meso–β regime (30–70km) associated with the succession of wide valleys and bulky terrain features; and 3) an orographic meso–α regime (≤30km) associated with the complex succession of protruding south-facing ridges and narrow valleys that characterize the Himalayan foothills between altitudes of 3000 and 5000m elevations

    Rate of Al-Si ordering in sanidines from an ignimbrite cooling unit

    No full text
    X-ray diffraction studies of monoclinic alkali feldspars [016 (AbfAn)27] from a 300-meter-thick ignimbrite indicate that those feldspars in the central portion of the unit are significantly more ordered than those near the margins. The variations in degree of order are indicative of structural states that cover most of the more disordered half of the range between high sanidine and orthoclase. Further Al-Si ordering is believed to have become ineffective at temperatures below approximately 500 ºC, based upon the lack of significant K-Na unmixing The length of time required for feldspars to order to their observed state can be estimated by calculation of the time required for the ignimbrite to cool from 800 ºC, the approximate emplacement temperature, to 500 ºC; this period was found to be a few hundred to 650 years, depending upon the cooling effects of rain water from above and ground water from below

    In vitro kinetics of factor VIII activity in patients with mild haemophilia A and a discrepancy between one-stage and two-stage factor VIII assay results

    No full text
    In some mild haemophilia A patients (discrepant haemophilia), factor VIII coagulant activity (FVIII:C) levels, by one-stage assay are more than double than those by two-stage assay. This may be due to the longer incubation times (10-12 min) in the two-stage assay. This study aimed to determine the time course of the activation phase of the two-stage assay, using both classical coagulation and chromogenic detection methods. In both systems, for equivalent patients (equivalent FVIII:C levels by one-stage and two-stage assays, n = 6, all different mutations), similar FVIII:C results were obtained with short- or long-incubation times. In contrast, plasma from discrepant patients (n = 8, five different mutations) showed higher FVIII:C at shorter incubation times than after longer incubation times. In the chromogenic assay, FVIII:C levels were higher after incubation for 2 min (23-56%, mean 41%) than after 10 min (19-41%, mean 29%). In the classical coagulation assay, FVIII:C levels were higher at shorter incubation times (21-64%, mean 37%) than with the longer incubation times usually used (13-29%, mean 23%). These time-course experiments have verified that the longer incubation time used in the two-stage assay is at least partly responsible for the lower FVIII:C measured by that assay in discrepant haemophilia.Susan E. Rodgers, Elizabeth M. Duncan, Denise M. Barbulescu, Diana M. Quinn, John V. Lloy
    corecore