856 research outputs found

    Contingency Support Simulation for the Tracking and Data Relay Satellite System (TDRSS)

    Get PDF
    In March 2006, the Tracking and Data Relay Satellite (TDRS)-3 experienced an unexpected thrusting event, which caused significant changes to its orbit. Recovery from this anomaly was protracted, raising concerns during the Independent Review Team (IRT) investigation of the anomaly regarding the contingency response readiness. The simulations and readiness exercises discussed in this paper were part of the response to the IRT concerns. This paper explains the various levels of simulation needed to enhance the proficiency of the Flight Dynamics Facility (FDF) and supporting elements in recovery from a TDRS contingency situation. The main emergency to address is when a TDRS has experienced uncommanded, unreported, or misreported thrusting, causing a ground station to lose the ability to acquire the spacecraft, as happened in 2006. The following levels of simulation are proposed: 1) Tests that would be performed by the individual support sites to verify that internal procedures and tools are in place and up to date; 2) Tabletop simulations that would involve all of the key support sites talking through their respective operating procedures to ensure that proper notifications are made and communications links are established; and 3) Comprehensive simulations that would be infrequent, but realistic, involving data exchanges between ground sites and voice and electronic communications among the supporting elements

    Perform a gyro test of general relativity in a satellite and develop associated control technology

    Get PDF
    The progress accomplished in the Stanford Gyro Relativity program during the period November 1974 to October 1975 was described. Gyro developments were continued in the main laboratory dewar, concentrating on the operation of a three axis gyro readout and on improvements to the methods of canceling trapped fields in the rotor; these efforts culminated in the first successful observation of the London moment in the spinning gyro rotor in March 1975. Following a review meeting at that time, a new goal was formulated for the next 12 to 18 months, namely to operate a gyroscope in the new ultra-low field facility with readout resolution approaching 1 arc-second. The following other tasks were also completed: (1) sputtering work, (2) magnetometry, (3) construction and installation of the North Star simulator, (4) analysis of torques on the gyro, especially in inclined orbits, (5) equivalence principle accelerometer, and (6) analysis of a twin-satellite test of relativity

    Evaluation of the performance of a lateral flow device for quantitative detection of anti-SARS-CoV-2 IgG

    Get PDF
    Introduction: The AbC-19™ lateral flow immunoassay (LFIA) performance was evaluated on plasma samples from a SARS-CoV-2 vaccination cohort, WHO international standards for anti-SARS-CoV-2 IgG (human), individuals ≥2 weeks from infection of RT-PCR confirmed SARS-CoV-2 genetic variants, as well as microorganism serology. Methods: Pre-vaccination to three weeks post-booster samples were collected from a cohort of 111 patients (including clinically extremely vulnerable patients) from Northern Ireland. All patients received Oxford-AstraZeneca COVID-19 vaccination for the first and second dose, and Pfizer-BioNTech for the third (first booster). WHO international standards, 15 samples from 2 variants of concern (Delta and Omicron) and cross-reactivity with plasma samples from other microorganism infections were also assessed on AbC-19™. Results: All 80 (100%) participants sampled post-booster had high positive IgG responses, compared to 38/95 (40%) participants at 6 months post-first vaccination. WHO standard results correlated with information from corresponding biological data sheets, and antibodies to all genetic variants were detected by LFIA. No cross-reactivity was found with exception of one (of five) Dengue virus samples. Conclusion: These findings suggest BNT162b2 booster vaccination enhanced humoral immunity to SARS-CoV-2 from pre-booster levels, and that this antibody response was detectable by the LFIA. In combination with cross-reactivity, standards and genetic variant results would suggest LFIA may be a cost-effective measure to assess SARS-CoV-2 antibody status

    Effective In Vivo Topical Delivery of siRNA and Gene Silencing in Intact Corneal Epithelium Using a Modified Cell-Penetrating Peptide

    Get PDF
    Autosomal dominantly inherited genetic disorders such as corneal dystrophies are amenable to allele-specific gene silencing with small interfering RNA (siRNA). siRNA delivered to the cornea by injection, although effective, is not suitable for a frequent long-term treatment regimen, whereas topical delivery of siRNA to the cornea is hampered by the eye surface's protective mechanisms. Herein we describe an attractive and innovative alternative for topical application using cell-penetrating peptide derivatives capable of complexing siRNA non-covalently and delivering them into the cornea. Through a rational design approach, we modified derivatives of a cell-penetrating peptide, peptide for ocular delivery (POD), already proved to diffuse into the corneal layers. These POD derivatives were able to form siRNA-peptide complexes (polyplexes) of size and ζ-potential similar to those reported able to undergo cellular internalization. Successful cytoplasmic release and gene silencing in vitro was obtained when an endosomal disruptor, chloroquine, was added. A palmitoylated-POD, displaying the best delivery properties, was covalently functionalized with trifluoromethylquinoline, an analog of chloroquine. This modified POD, named trifluoromethylquinoline-palmitoyl-POD (QN-Palm-POD), when complexed with siRNA and topically applied to the eye in vivo, resulted in up to 30% knockdown of luciferase reporter gene expression in the corneal epithelium. The methods developed within represent a valid standardized approach that is ideal for screening of a range of delivery formulations

    SEDLIN Forms Homodimers: Characterisation of SEDLIN Mutations and Their Interactions with Transcription Factors MBP1, PITX1 and SF1

    Get PDF
    BACKGROUND: SEDLIN, a 140 amino acid subunit of the Transport Protein Particle (TRAPP) complex, is ubiquitously expressed and interacts with the transcription factors c-myc promoter-binding protein 1 (MBP1), pituitary homeobox 1 (PITX1) and steroidogenic factor 1 (SF1). SEDLIN mutations cause X-linked spondyloepiphyseal dysplasia tarda (SEDT). METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effects of 4 missense (Asp47Tyr, Ser73Leu, Phe83Ser and Val130Asp) and the most C-terminal nonsense (Gln131Stop) SEDT-associated mutations on interactions with MBP1, PITX1 and SF1 by expression in COS7 cells. Wild-type SEDLIN was present in the cytoplasm and nucleus and interacted with MBP1, PITX1 and SF1; the SEDLIN mutations did not alter these subcellular localizations or the interactions. However, SEDLIN was found to homodimerize, and the formation of dimers between wild-type and mutant SEDLIN would mask a loss in these interactions. A mammalian SEDLIN null cell-line is not available, and the interactions between SEDLIN and the transcription factors were therefore investigated in yeast, which does not endogenously express SEDLIN. This revealed that all the SEDT mutations, except Asp47Tyr, lead to a loss of interaction with MBP1, PITX1 and SF1. Three-dimensional modelling studies of SEDLIN revealed that Asp47 resides on the surface whereas all the other mutant residues lie within the hydrophobic core of the protein, and hence are likely to affect the correct folding of SEDLIN and thereby disrupt protein-protein interactions. CONCLUSIONS/SIGNIFICANCE: Our studies demonstrate that SEDLIN is present in the nucleus, forms homodimers and that SEDT-associated mutations cause a loss of interaction with the transcription factors MBP1, PITX1 and SF1

    CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting

    Get PDF
    CRISPR/Cas9-based therapeutics hold the possibility for permanent treatment of genetic disease. The potency and specificity of this system has been used to target dominantly inherited conditions caused by heterozygous missense mutations through inclusion of the mutated base in the short-guide RNA (sgRNA) sequence. This research evaluates a novel approach for targeting heterozygous single-nucleotide polymorphisms (SNPs) using CRISPR/Cas9. We determined that a mutation within KRT12, which causes Meesmann's epithelial corneal dystrophy (MECD), leads to the occurrence of a novel protospacer adjacent motif (PAM). We designed an sgRNA complementary to the sequence adjacent to this SNP-derived PAM and evaluated its potency and allele specificity both in vitro and in vivo. This sgRNA was found to be highly effective at reducing the expression of mutant KRT12 mRNA and protein in vitro. To assess its activity in vivo we injected a combined Cas9/sgRNA expression construct into the corneal stroma of a humanized MECD mouse model. Sequence analysis of corneal genomic DNA revealed non-homologous end-joining repair resulting in frame-shifting deletions within the mutant KRT12 allele. This study is the first to demonstrate in vivo gene editing of a heterozygous disease-causing SNP that results in a novel PAM, further highlighting the potential for CRISPR/Cas9-based therapeutics

    Mice with an N-Ethyl-N-Nitrosourea (ENU) Induced Tyr209Asn Mutation in Natriuretic Peptide Receptor 3 (NPR3) Provide a Model for Kyphosis Associated with Activation of the MAPK Signaling Pathway

    Get PDF
    Non-syndromic kyphosis is a common disorder that is associated with significant morbidity and has a strong genetic involvement; however, the causative genes remain to be identified, as such studies are hampered by genetic heterogeneity, small families and various modes of inheritance. To overcome these limitations, we investigated 12 week old progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) using phenotypic assessments including dysmorphology, radiography, and dual-energy X-ray absorptiometry. This identified a mouse with autosomal recessive kyphosis (KYLB). KYLB mice, when compared to unaffected littermates, had: thoraco-lumbar kyphosis, larger vertebrae, and increased body length and increased bone area. In addition, female KYLB mice had increases in bone mineral content and plasma alkaline phosphatase activity. Recombination mapping localized the Kylb locus to a 5.5Mb region on chromosome 15A1, which contained 51 genes, including the natriuretic peptide receptor 3 (Npr3) gene. DNA sequence analysis of Npr3 identified a missense mutation, Tyr209Asn, which introduced an N-linked glycosylation consensus sequence. Expression of wild-type NPR3 and the KYLB-associated Tyr209Asn NPR3 mutant in COS-7 cells demonstrated the mutant to be associated with abnormal N-linked glycosylation and retention in the endoplasmic reticulum that resulted in its absence from the plasma membrane. NPR3 is a decoy receptor for C-type natriuretic peptide (CNP), which also binds to NPR2 and stimulates mitogen-activated protein kinase (MAPK) signaling, thereby increasing the number and size of hypertrophic chondrocytes. Histomorphometric analysis of KYLB vertebrae and tibiae showed delayed endochondral ossification and expansion of the hypertrophic zones of the growth plates, and immunohistochemistry revealed increased p38 MAPK phosphorylation throughout the growth plates of KYLB vertebrae. Thus, we established a model of kyphosis due to a novel NPR3 mutation, in which loss of plasma membrane NPR3 expression results in increased MAPK pathway activation, causing elongation of the vertebrae and resulting in kyphosis
    corecore