6 research outputs found

    Deep Sequencing of Three Loci Implicated in Large-Scale Genome-Wide Association Study Smoking Meta-Analyses

    Get PDF
    Genome-wide association study meta-analyses have robustly implicated three loci that affect susceptibility for smoking: CHRNA5\CHRNA3\CHRNB4, CHRNB3\CHRNA6 and EGLN2\CYP2A6. Functional follow-up studies of these loci are needed to provide insight into biological mechanisms. However, these efforts have been hampered by a lack of knowledge about the specific causal variant(s) involved. In this study, we prioritized variants in terms of the likelihood they account for the reported associations. We employed targeted capture of the CHRNA5\CHRNA3\CHRNB4, CHRNB3\CHRNA6, and EGLN2\CYP2A6 loci and flanking regions followed by next-generation deep sequencing (mean coverage 78×) to capture genomic variation in 363 individuals. We performed single locus tests to determine if any single variant accounts for the association, and examined if sets of (rare) variants that overlapped with biologically meaningful annotations account for the associations. In total, we investigated 963 variants, of which 71.1% were rare (minor allele frequency < 0.01), 6.02% were insertion/deletions, and 51.7% were catalogued in dbSNP141. The single variant results showed that no variant fully accounts for the association in any region. In the variant set results, CHRNB4 accounts for most of the signal with significant sets consisting of directly damaging variants. CHRNA6 explains most of the signal in the CHRNB3\CHRNA6 locus with significant sets indicating a regulatory role for CHRNA6. Significant sets in CYP2A6 involved directly damaging variants while the significant variant sets suggested a regulatory role for EGLN2. We found that multiple variants implicating multiple processes explain the signal. Some variants can be prioritized for functional follow-up. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: [email protected]

    Utilization of wrightia tinctoria nano seed fibers as a reinforcement in the preparation of epoxy-based composites

    No full text
    Natural seed fiber reinforced composite materials are replacing many conventional ones because of their excellent properties, less weight, easy availability, etc. Composite materials are used in many areas because of their superior features. Mechanical property is one of the vital parameters for choosing the material. The current investigation has revealed an importance of recently well-known Wrightia tinctoria nano seed fibers (WTNSFs), which are extracted physically. Wrightia tinctoria nano seed fiber reinforced composite was prepared with the epoxy resin by hand layup method. Epoxy resin is easy to handle and available at low cost. Mechanical tests are conducted reinforced composites of plain epoxy and WTNSFs to obtain strength properties like tensile, flexural, impact. Water absorption tests also performed on composites. Here, the developed composites are easy to handle, offered economically, and used primarily in marine applications due to less water absorption and good wax content. A comprehensive description of different tests and the properties of WTNSFs are studied and compared with the other existing natural fibers. This work showed that 35% combination of WTNSFs reinforced epoxy matrix offers enhanced mechanical properties with minimum water absorption compared with plain epoxy composites

    Mix Design and Mechanical Properties of Fly Ash and GGBFS-Synthesized Alkali-Activated Concrete (AAC)

    No full text
    Cement is one of the construction materials widely used around the world in order to develop infrastructure and it is also one of the factors affecting economies. The production of cement consumes a lot of raw materials like limestone, which releases CO2 into the atmosphere and thus leads to global warming. Many investigations are underway in this area, essentially focusing on the eco-accommodating environment. In the research, an alternative material to cement binder is geopolymer binder, with the same efficiency. This paper presents scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis of factory byproducts (i.e., fly ash and ground granulated blast furnace slag (GGBFS)). The mix design process for the manufacture of alkali-activated geopolymer binders synthesized by fly ash and GGBFS is presented. The mechanical properties (compression, split tensile and flexural strength, bond strength) of geopolymer concrete at different mix proportions and at dissimilar curing conditions were also investigated. Geopolymer concrete synthesized with 30% fly ash and 70% GGBFS has better properties at 14 M of NaOH and cured in an oven for 24 h at 70 &#176;C
    corecore