66 research outputs found

    The novel, small-molecule DNA methylation inhibitor SGI-110 as an ovarian cancer chemosensitizer

    Get PDF
    PURPOSE: To investigate SGI-110 as a "chemosensitizer" in ovarian cancer and to assess its effects on tumor suppressor genes (TSG) and chemoresponsiveness-associated genes silenced by DNA methylation in ovarian cancer. EXPERIMENTAL DESIGN: Several ovarian cancer cell lines were used for in vitro and in vivo platinum resensitization studies. Changes in DNA methylation and expression levels of TSG and other cancer-related genes in response to SGI-110 were measured by pyrosequencing and RT-PCR. RESULTS: We demonstrate in vitro that SGI-110 resensitized a range of platinum-resistant ovarian cancer cells to cisplatin (CDDP) and induced significant demethylation and reexpression of TSG, differentiation-associated genes, and putative drivers of ovarian cancer cisplatin resistance. In vivo, SGI-110 alone or in combination with CDDP was well tolerated and induced antitumor effects in ovarian cancer xenografts. Pyrosequencing analyses confirmed that SGI-110 caused both global (LINE1) and gene-specific hypomethylation in vivo, including TSGs (RASSF1A), proposed drivers of ovarian cancer cisplatin resistance (MLH1 and ZIC1), differentiation-associated genes (HOXA10 and HOXA11), and transcription factors (STAT5B). Furthermore, DNA damage induced by CDDP in ovarian cancer cells was increased by SGI-110, as measured by inductively coupled plasma-mass spectrometry analysis of DNA adduct formation and repair of cisplatin-induced DNA damage. CONCLUSIONS: These results strongly support further investigation of hypomethylating strategies in platinum-resistant ovarian cancer. Specifically, SGI-110 in combination with conventional and/or targeted therapeutics warrants further development in this setting

    Heart Rate during Conflicts Predicts Post-Conflict Stress-Related Behavior in Greylag Geese

    Get PDF
    Background: Social stressors are known to be among the most potent stressors in group-living animals. This is not only manifested in individual physiology (heart rate, glucocorticoids), but also in how individuals behave directly after a conflict. Certain ‘stress-related behaviors ’ such as autopreening, body shaking, scratching and vigilance have been suggested to indicate an individual’s emotional state. Such behaviors may also alleviate stress, but the behavioral context and physiological basis of those behaviors is still poorly understood. Methodology/Principal Findings: We recorded beat-to-beat heart rates (HR) of 22 greylag geese in response to agonistic encounters using fully implanted sensor-transmitter packages. Additionally, for 143 major events we analyzed the behavior shown by our focal animals in the first two minutes after an interaction. Our results show that the HR during encounters and characteristics of the interaction predicted the frequency and duration of behaviors shown after a conflict. Conclusions/Significance: To our knowledge this is the first study to quantify the physiological and behavioral responses to single agonistic encounters and to link this to post conflict behavior. Our results demonstrate that ‘stress-related behaviors’ are flexibly modulated by the characteristics of the preceding aggressive interaction and reflect the individual’s emotional strain, which is linked to autonomic arousal. We found no support for the stress-alleviating hypothesis, but we propose tha

    Epigenetic change in e-cardherin and COX-2 to predict chronic periodontitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA methylation of certain genes frequently occurs in neoplastic cells. Although the cause remains unknown, many genes have been identified with such atypical methylation in neoplastic cells. The hypermethylation of E-Cadherin and Cyclooxygenase 2 (COX-2) in chronic inflammation such as chronic periodontitis may demonstrate mild lesion/mutation epigenetic level. This study compares the hypermethylation status of E-Cadherin and COX-2 genes which are often found in breast cancer patients with that in chronic periodontitis.</p> <p>Methods</p> <p>Total DNA was extracted from the blood samples of 108 systemically healthy non-periodontitis subjects, and the gingival tissues and blood samples of 110 chronic periodontitis patient as well as neoplastic tissues of 106 breast cancer patients. Methylation-specific PCR for E-Cadherin and COX-2 was performed on these samples and the PCR products were analyzed on 2% agarose gel.</p> <p>Results</p> <p>Hypermethylation of E-Cadherin and COX-2 was observed in 38% and 35% of the breast cancer samples, respectively. In chronic periodontitis patients the detection rate was 25% and 19% respectively, and none was found in the systemically healthy non-periodontitis control subjects. The hypermethylation status was shown to be correlated among the three groups with statistical significance (p < 0.0001). The methylation of CpG islands in E-Cadherin and COX-2 genes in periodontitis patients occurs more frequently in periodontitis patients than in the control subjects, but occurs less frequently than in the breast cancer patients.</p> <p>Conclusions</p> <p>This set of data shows that the epigenetic change in E-Cadherin and Cyclooxygenase-2 is associated with chronic periodontitis. The epigenetic changes presented in chronic inflammation patients might demonstrate an irreversible destruction in the tissues or organs similar to the effects of cancer. Chronic periodontitis to some extent might be associated with DNA hypermethylation which is related to cancer risk factors.</p

    Endocrine Disruptor Regulation of MicroRNA Expression in Breast Carcinoma Cells

    Get PDF
    Several environmental agents termed "endocrine disrupting compounds" or EDCs have been reported to bind and activate the estrogen receptor-α (ER). The EDCs DDT and BPA are ubiquitously present in the environment, and DDT and BPA levels in human blood and adipose tissue are detectable in most if not all women and men. ER-mediated biological responses can be regulated at numerous levels, including expression of coding RNAs (mRNAs) and more recently non-coding RNAs (ncRNAs). Of the ncRNAs, microRNAs have emerged as a target of estrogen signaling. Given the important implications of EDC-regulated ER function, we sought to define the effects of BPA and DDT on microRNA regulation and expression levels in estrogen-responsive human breast cancer cells.To investigate the cellular effects of DDT and BPA, we used the human MCF-7 breast cancer cell line, which is ER (+) and hormone sensitive. Our results show that DDT and BPA potentiate ER transcriptional activity, resulting in an increased expression of receptor target genes, including progesterone receptor, bcl-2, and trefoil factor 1. Interestingly, a differential increase in expression of Jun and Fas by BPA but not DDT or estrogen was observed. In addition to ER responsive mRNAs, we investigated the ability of DDT and BPA to alter the miRNA profiles in MCF-7 cells. While the EDCs and estrogen similarly altered the expression of multiple microRNAs in MCF-7 cells, including miR-21, differential patterns of microRNA expression were induced by DDT and BPA compared to estrogen.We have shown, for the first time, that BPA and DDT, two well known EDCs, alter the expression profiles of microRNA in MCF-7 breast cancer cells. A better understanding of the molecular mechanisms of these compounds could provide important insight into the role of EDCs in human disease, including breast cancer

    Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s) underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI) methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition.</p> <p>Methods</p> <p>To model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis.</p> <p>Results</p> <p>Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99) between the total number of hypermethylated CGIs and GI<sub>50 </sub>values (<it>i.e</it>., increased drug resistance) following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells.</p> <p>Conclusion</p> <p>Selective epigenetic disruption of distinct biological pathways was observed during development of platinum resistance in ovarian cancer. Integrated analysis of DNA methylation and gene expression may allow for the identification of new therapeutic targets and/or biomarkers prognostic of disease response. Finally, our results suggest that epigenetic therapies may facilitate the prevention or reversal of transcriptional repression responsible for chemoresistance and the restoration of sensitivity to platinum-based chemotherapeutics.</p

    The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma

    Full text link

    Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status.

    Get PDF
    MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17β-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells
    corecore