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Abstract

Purpose—To investigate SGI-110 as a “chemosensitizer” in ovarian cancer (OC) and to assess 

its effects on tumor suppressor genes (TSG) and chemo-responsiveness associated genes silenced 

by DNA methylation in OC.

Experimental Design—Several OC cell lines were used for in vitro and in vivo platinum 

resensitization studies. Changes in DNA methylation and expression levels of TSG and other 

cancer-related genes in response to SGI-110 were measured by pyrosequencing and RT-PCR.
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Results—We demonstrate in vitro that SGI-110 resensitized a range of platinum-resistant OC 

cells to cisplatin (CDDP) and induced significant demethylation and reexpression of TSG, 

differentiation-associated genes and putative drivers of OC cisplatin resistance. In vivo, SGI-110 

alone or in combination with CDDP was well tolerated and induced anti-tumor effects in OC 

xenografts. Pyrosequencing analyses confirmed that SGI-110 caused both global (LINE1) and 

gene specific hypomethylation in vivo, including TSGs (RASSF1A), proposed drivers of OC 

cisplatin resistance (MLH1 and ZIC1), differentiation-associated genes (HOXA10 and HOXA11), 

and transcription factors (STAT5B). Furthermore, DNA damage induced by CDDP in OC cells 

was increased by SGI-110, as measured by ICP-mass spectrometry analysis of DNA adduct 

formation and repair of cisplatin-induced DNA damage.

Conclusions—These results strongly support further investigation of hypomethylating strategies 

in platinum-resistant OC. Specifically, SGI-110 in combination with conventional and/or targeted 

therapeutics warrants further development in this setting.
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INTRODUCTION

Ovarian cancer (OC) is the deadliest gynecological cancer, causing 14,270 estimated deaths 

and 21,980 new cases in the United States (1). Current treatment for OC includes 

cytoreductive surgery and platinum-based chemotherapy (2). Although most patients 

initially respond to chemotherapy, more than 80% of women develop resistance, with an 

average time to progression ranging from 18 to 24 months (3). Therapeutic options are 

limited for platinum resistant OC and while new targeted agents are currently under clinical 

investigation, a personalized approach has not been easy to implement and has not resulted 

in improved outcomes. The recent genomic description of high grade serous OC revealed 

that even chemotherapy-naïve tumors harbor highly disorganized genomes (4), characterized 

by tens of genetic alterations per tumor. Such molecular chaos is expected to be further 

augmented in the platinum-resistant setting, rendering therapy targeted to single mutations 

highly unlikely to alter outcomes. Indeed, whereas several second-line therapeutic 

approaches have prolonged progression-free survival (PFS), the impact on overall survival 

remains modest (5–7).

Platinum resistance in OC is a complex phenomenon, resulting from alterations in a number 

of key pathways as well as epigenetic anomalies including changes in DNA methylation, 

histone modifications, and nucleosome positioning (8–11). Abnormal DNA methylation 

patterns, such as increased DNA methylation within CG-rich (“CpG islands”) promoter 

regions (often within tumor suppressor genes), is a well-studied transcriptionally repressive 

epigenetic modification (12) occurring frequently in OC. This epigenetic mark can be 

reversed using pharmacological approaches, such as by using DNA methyltransferase 

inhibitors (DNMTIs) (13). We and others previously demonstrated in preclinical studies that 

known DNMTIs decitabine (5-aza-dC) and zebularine resensitize chemoresistant OC cells to 

platinum (14, 15). Recent phase I/II trials showed that low-dose decitabine followed by 

carboplatin resulted in significant clinical and biological activity in women with platinum-
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resistant OC (16–18). Current FDA approved therapeutic DNMTIs are subject to rapid 

degradation by hydrolytic cleavage and deamination by cytidine deaminase and are unstable 

after intravenous infusion limiting their potential as cancer therapeutics (19, 20).

SGI-110, a dinucleotide combining 5-aza-dC and deoxyguanosine (Astex Pharmaceuticals, 

Inc.), has been shown to be less prone to deamination by cytidine deaminase and more stable 

in aqueous solution (21), making it a promising alternative to 5-aza-dC. We conducted a 

preclinical combination study of SGI-110 with cisplatin (CDDP) in OC models and 

demonstrated that pre-treatment with SGI-110 resensitized a range of OC cells to CDDP, 

both in vitro and in vivo. In all, our preclinical studies reveal that SGI-110 is an effective 

DNA hypomethylator in OC and supports its future clinical development in OC and other 

solid tumors. Clinical trials using this combination are ongoing.

MATERIALS AND METHODS

Cell culture and drugs

A2780 OC cells were obtained and authenticated in 2012 from ATCC and cell culture 

reagents were purchased from Invitrogen. A2780-CDDP-resistant cells and CP70-CDDP 

resistant cells were prepared by exposure to incrementally increasing doses of cis-

diamminedichloroplatinum (II) dichloride (CDDP, cisplatin) (Calbiochem) as previously 

described (14). SKOV3, 59M, and OAW28 cells were obtained from the European 

Collection of Cell Cultures (ECACC). 59M and OAW28 cells were maintained in 

Dulbecco's Modified Eagle's Medium supplemented with 10% fetal bovine serum (FBS). 

SKOV3 cells were maintained in McCoys 5A medium supplemented with 1.5 Mm 

glutamine and 10% FBS. All other cells were maintained in RPMI 1640 media 

supplemented with 10% FBS and 1% antibiotics, as described previously (14). 5-aza-2'-

deoxycytidine (5-aza-dC) was purchased from Sigma. SGI-110 was provided by Astex 

Pharmaceuticals, Inc. (Dublin, CA).

Platinum resensitization

Treatment with 5-aza-dC (5µM), SGI-110 (0.1, 0.3, 1 and 5µM), or vehicle (DMSO 1:2000) 

was performed for 48hr prior to CDDP treatment (15). MTT and alamar blue (Invitrogen) 

assays were used to determine both IC50 values and growth curves, as described previously 

(15). Details can be found in the online Supplementary Methods.

qRT-PCR

RNA was isolated from cultured OC cells using AllPrep DNA/RNA/Protein Mini kit 

(Qiagen) following manufacturer’s protocol and the quantity and quality determined by 

absorbance (260, 280nm). Total RNA (2 µg) was reverse transcribed with the LightCycler 

480 SYBR Green I Master kit (Roche, Switzerland) and analyzed by qRT-PCR according to 

the manufacturer’s instructions. Primer sequences (Fisher Scientific) can be found in 

Supplementary Table S1. For in vivo qRT-PCR validation assay, the RNA was isolated from 

tumor tissues using TRizol® reagent (Invitrogen, CA) according to the manufacturer’s 

instruction. qRT-PCR was performed using miScript reverse transcription and miScript 

SYBR® Green PCR kits (Qiagen, CA) in a Roche Lightcycler (Roche Applied Science, IN), 
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as described previously (14, 22). mRNA expression level was determined using LightCycler 

software version 3.5 (Roche Applied Science, IN), normalized to EEF1α1b, and using the 

2−ΔΔCT method of relative quantification.

In vivo non-tumor bearing mice experiments and treatment schedule

All animal studies adhered to protocols approved by the Institutional Animal Care and Use 

Committee of Indiana University. Female nude, athymic, BALB/c-nu/nu mice (4–5 weeks 

old) (Harlan) were treated with SGI-110, CDDP, or SGI-110 and CDDP in combination 

according to the treatment schedule provided in Supplementary Figure S1A. SGI-110 was 

administered at either 2mg/kg or 5mg/kg and CDDP was administered at 2mg/kg or 4mg/kg. 

Body weight (BW), eating habits and behavior were monitored biweekly.

In vivo xenograft experiments and treatment schedule

Parental or CDDP-resistant A2780 cells (Sigma) were counted, resuspended in 100µl 1:1 

RPMI 1640/Matrigel (BD Biosciences), and 7×105 cells were injected subcutaneously (s.c.) 

into the right flanks of 4–5 week old female nude athymic mice (BALB/c-nu/nu, Harlan). 

Tumors were allowed to grow to reach a predetermined size (~4–5 mm in diameter) before 

each treatment. Mice bearing similar tumor size (4–5 mm in diameter) were randomly 

assigned to different treatment arms: control, CDDP, SGI-110, or SGI-110 and CDDP 

combination, as summarized in Supplementary Figure S1B. Tumor sizes and BWs were 

measured biweekly. Tumor length (l) and width (w) were measured using digital calipers. 

Tumor volume (v) was calculated using the following equation: v = ½×l×w2. Mice were 

sacrificed if tumors reached a diameter of 2cm or at the end of study. Tumor growth curves 

were analyzed using general linear models. Xenografts were snap frozen for DNA/RNA 

extraction.

DNA extraction and pyrosequencing of blood, tumors and cell lines

DNA was extracted from 100 µl of blood or 25mg tumor tissue using DNeasy Blood & 

Tissue Kit (Qiagen). Sodium bisulfite conversion of genomic DNA, cleanup, and LINE1 and 

specific gene pyrosequencing analysis was performed by EpigenDx Inc. Primers are listed in 

Supplementary Table S2. For cell lines, genomic DNA extraction was performed using the 

QIAamp DNA extraction kit and 100 ng-2 µg of genomic DNA was converted to bisulfite 

DNA using the EpiTect® Plus DNA Bisulfite Kit (Qiagen). Pyrosequencing analysis of 

LINE1 elements, MLH1 and ZIC1 was performed using the PyroMark Q24 in conjunction 

with PyroMark Q24 CpG LINE1, CpG MLH1 and CpG ZIC1 assay kits (Qiagen).

ICP-mass spectrometry analysis

Parental and CDDP-resistant A2780 cells were plated at 2×105 per well in 6-well plates. 

Triplicate wells were treated with either vehicle (DMSO) or 5µM SGI-110 for 48 hours. 

Media was replaced with fresh RPMI containing 10µM CDDP. Cells were incubated for 2hr 

at 37°C and 5% CO2, media was removed and cells washed with phosphate-buffered saline. 

Cells received fresh RPMI without CDDP and were allowed to repair for 0, 2, 4 and 24 

hours. DNA was extracted from cells by lysis in the well and spooling as described by Laird 

et al (23). DNA (30–50 µg) was hydrolyzed overnight in 1% nitric acid at 70°C in 500µL 

Fang et al. Page 4

Clin Cancer Res. Author manuscript; available in PMC 2015 December 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



total volume. Samples were then diluted to 1.5mL final volume in 1% nitric acid and 

analyzed by ICP-mass spectrometry as we have previously described (24). Briefly, a 

benchtop series Thermo ICPMS X-series II system with collision cell technology capability 

and PlasmaLab software were used to quantify CDDP concentrations. The argon plasma 

torch purity was at least 99.999% (Praxair Distribution, Inc.). Water was purified with a 

Milli-Q Advantage A10 System (Millipore). Optima nitric acid 67 to 70% (Fisher Scientific) 

was diluted to 2% and used as the solvent matrix while certified standard solutions were 

provided by Inorganic Ventures. ICP-MS calibration was conducted according to the 

manufacturer's specifications, followed by a multipoint curve fitted by linear regression with 

a minimum correlation coefficient (r2) of 0.999. Samples were spiked with Yttrium (Y, 88.9 

Da) and lead (Pb, 207.2 Da) to bracket the CDDP (Pt, 195.1 Da) signal and were used as 

machine controls. Triplicate injections were used to quantify the level of CDDP in each 

individual sample based on a standard curve with elemental CDDP. The standard curve was 

performed with each experimental run and achieved linearity over the range of 

concentrations tested with an r2 of greater than 0.95.

Western blot analysis

Proteins extracted from treated cells were transferred to polyvinylidene difluoride 

membranes and blotted with rabbit anti-β-tubulin (1:4000) (Santa Cruz Biotechnology), anti-

trimethyl-histone-H3 (Lys27) (1:1000) (Millipore), anti-acetyl-histone H4 (Lys16) (1:1000) 

(Millipore), mouse anti-histone H3 (1:1000) (Active Motif, CA), MLH1 (BD Biosciences) 

and actin (Abcam). Goat anti-Rabbit IgG (H+L), peroxidase labeled antibodies (1:4000) and 

SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) were used for 

detection of H4K16ac and H3K27me3. Infrared-dye-labeled anti-mouse antibodies (Licor 

Bioscience) and the Odyssey infrared imaging system (Licor Biotechnology) were used to 

detect MLH1.

Densitometry used Image J analysis software. Experiments were done in triplicate.

Statistical analysis

Statistical analysis employed the Student’s t-test to compare BW and tumor volume and the 

paired t-test to compare LINE1 and gene-specific methylation levels between mice treated 

with vehicle control, SGI-110, CDDP, or SGI-110 and CDDP. All P-values were corrected 

with the Bonferroni correction method for the number of comparisons. A P-value of 0.05 

was considered statistically significant. All in vitro experiments were reported as means ± 

S.E.M of 3 independent experiments.

RESULTS

SGI-110 modulates sensitivity to CDDP, causes demethylation and gene reexpression in 
vitro

We investigated whether the DNMTIs 5-aza-dC and SGI-110, a dinucleotide antimetabolite 

of 5-aza-dC, modulates the response of OC cells to CDDP. Parental A2780 cells, A2780-

CDDP resistant cells, and CP70-CDDP resistant cells were primed with vehicle, SGI-110, or 

5-aza-dC for 48 hours and then were treated with CDDP. Cell viability was measured by 
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MTT assay. “Priming” with moderate doses (5 µM) of either SGI-110 (Fig. 1A) or 5-aza-dC 

(Supplementary Figure S2) increased the sensitivity of OC cells to CDDP causing a >2-fold 

reduction in the IC50 for CDDP: 28 µM CDDP IC50 for A2780-CDDP resistant cells after 

SGI-110 priming compared to 42 µM CDDP IC50 for parental A2780 cells by CDDP, 

Supplementary Table S3). Interestingly, we observed that SGI-110 increased sensitivity to 

CDDP for both the parental and the resistant A2780 cells. Although among other OC cell 

lines, the parental A2780 is considered to be CDDP “sensitive”, it has a relatively high IC50 

for the drug (Supplementary Table S3).

Previous studies have demonstrated an association between CDDP-resistance of OC cells 

and hypermethylation mediated silencing of several genes including the mismatch repair 

protein MLH1, TSGs, RASSF1A, and the differentiation associated gene HOXA11 (10, 14, 

15), prompting us to measure the effects of SGI-110 on the DNA methylation and 

expression levels of those genes. SGI-110-modulated chemoresensitization of the A2780 

cells was accompanied by demethylation and reexpression of MLH1 gene (Fig. 1B), 

RASSF1A (Fig. 1C) and HOXA11 (Fig. 1D). We also measured the effects of SGI-110 on 

other genes whose hypomethylation correlated with clinical response to decitabine in a 

previous clinical trial (16), noting that SGI-110 induced promoter demethylation of these 

additional genes. Additional results are provided in Supplementary Figure S3.

Next, we evaluated whether a lower dose of SGI-110 (0.3µM) also modulates CDDP-

response in OC cell lines. Cells were pre-treated for 3 days with a low dose of SGI-110 (25), 

prior to exposure to CDDP and cell viability was measured by the alamar blue assay. We 

confirmed that low dose SGI-110 increased sensitivity of A2780 cells to CDDP (9-fold 

sensitization, data not shown) consistent with the observations using higher doses of 

SGI-110 (Fig. 1A). Pre-treatment with SGI-110 increased up to 9-fold and 4-fold CDDP 

sensitivity of OVCAR8 and OAW28 OC cell lines, respectively (Supplementary Figure S4). 

However, the 59M, OVCAR3 and SKOV3 cells were not sensitized to CDDP by exposure 

to low dose SGI-110, suggesting differential cell response to the hypomethylating strategy.

To determine whether the 3 day exposure to low dose SGI-110 induced effective 

hypomethylation in the cell lines analyzed, LINE1 methylation was measured by 

pyrosequencing. Significant demethylation of LINE1 ranged from 17% to 45% (Fig. 1E), 

however no correlation between LINE1 hypomethylating activity of SGI-110 and 

resensitization to CDDP was recorded. As MLH1 reexpression correlated with 

resensitization of A2780 cells to CDDP (Fig. 1B), we next measured the effects of low dose 

SGI-110 on MLH expression levels in other OC cells. We found that MLH1 was not silenced 

in the OVCAR8 or OAW28 cells and treatment with SGI-110 did not modulate MLH1 

expression (Supplementary Fig. S5B, Supplementary Table S4), thus suggesting that the 

SGI-110-regulated mechanisms of CDDP-resistance in these cell lines are distinct from 

those of A2780 cells and not related to MLH1 expression levels.

Epigenetic gene silencing is a potential mechanism of OC CDDP-resistance

Unlike the A2780 models, the contribution of epigenetic silencing of key genes to CDDP- 

resistance of OVCAR8 and OAW28 has not been previously characterized. To investigate 

whether epigenetic mechanisms play a role in CDDP resistance in OVCAR8 and OAW28 
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cells, we analyzed gene expression levels of a panel of candidate drivers of OC CDDP 

resistance (Supplementary Table S5). The candidate genes were previously proposed by us 

(26) and Lum et al. (27), who identified genes that were epigenetically silenced (by 

hypermethylation) in primary samples derived from platinum-resistant OC patients. 

Expression levels of the candidate genes were determined by using real-time PCR, following 

exposure of the cells to SGI-110. Of the 19 candidate genes analyzed, a marked induction of 

DOK2 65-fold at 1 µM SGI–110) and ZIC1 11-fold at 1 µM SGI–110) expression levels 

were observed in response to SGI-110 in the OVCAR8 cell line (Fig. 2A, B). Furthermore, 

an induction of DOK2 41-fold at 1 µM SGI–110) and ZIC1 13-fold at 1 µM SGI–110) was 

also observed in the OAW28 cells, in addition to a modest induction of TWIST1 (3-fold at 1 

µM SGI–110), NR2E1 (7-fold at 1 µM SGI–110) and SOX9 (3-fold at 1 µM SGI–110) 

(Supplementary Figure S6). To determine whether the reexpression of ZIC1 and DOK2 was 

associated with resensitization of OC cells to CDDP, the effect of SGI-110 on ZIC1 and 

DOK2 expression levels was analyzed in the cells not sensizitzed to CDDP by SGI-110 

(59M, OVCAR3 and SKOV3, Supplementary Figure S4). A dose-dependent increase in 

DOK2 expression was observed in all of the cell lines tested, irrespective of response to 

CDDP (Fig. 2A), suggesting that the induction of DOK2 did not contribute to the CDDP- 

resensitization observed in these cell lines. However, SGI-110-dependent induction of ZIC1 

was only observed in the cell lines in which SGI-110 conferred resensitization to CDDP 

(OVCAR8 and OAW28; Fig. 2B, Supplementary Table S6), suggesting that the epigenetic-

silencing of ZIC1 is a potential mechanism of CDDP resistance in these cells.

The methylation levels of ZIC1 in the parental A2780, OVCAR8, OAW28, 59M, OVCAR3 

and SKOV3 cells were next determined by pyrosequencing (Fig. 2C). The highest level of 

ZIC1 methylation was observed in the OVCAR8 (21%), OAW28 (44%), and SKOV3 cells 

(31%). Levels of ZIC1 methylation were much lower in the parental A2780 (4%), 59M (4%) 

and OVCAR3 (4%) cell lines. Interestingly in SKOV3 cells, although ZIC1 was highly 

methylated, SGI-110 treatment did not induce ZIC1 reexpression, indicating that factors 

other than promoter methylation contribute to the repression of ZIC1 in these cells. In 

contrast, SGI-110 reversed the methylation of ZIC1 in a dose-dependent manner in OAW28 

cells (Fig. 2D). Taken together these data suggest that the CDDP resistance observed in 

OVCAR8 and OAW28 cells is at least in part due to hypermethylation of the ZIC1 promoter 

and that the reversal of epigenetic silencing of ZIC1 by SGI-110 can resensitize the cells to 

CDDP. These results point to new potential biomarkers that can explain development of 

platinum resistance in OC and predict response to epigenetic therapies.

SGI-110 tolerability studies in non-tumor bearing mice

To investigate whether SGI-110 alone or in combination with CDDP was tolerable in vivo, 

female nude athymic non-tumor bearing mice were treated with two different schedules 

(QD5 and biweekly) (Supplementary Figure S1A). The QD5 daily schedule was SGI-110 (2 

mg/kg or 5 mg/kg) treatment for five consecutive days alone or followed by CDDP (2 mg/kg 

or 4 mg/kg) on day 8 and was designed to model the regimen used in our previous clinical 

trial testing decitabine (5-aza-dc) as a chemosensitizer (16). The biweekly schedule used 

different doses of SGI-110 (2 mg/kg or 5 mg/kg), CDDP (2 mg/kg or 4 mg/kg), or both 

twice a week for 4 weeks. Animals were observed for three additional weeks post-treatment. 
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In the QD5 schedule, SGI-110 2 mg/kg had no effect on BW compared to SGI-110 5 mg/kg 

(Supplementary Figure S7A). Furthermore, the lower dose SGI-110-CDDP combination was 

well tolerated (Supplementary. Figure S7A, orange line) but initial BW loss was observed 

using the higher dose combinations (Supplementary. Figure S7A, pink and green lines). In 

the biweekly schedule, all SGI-110 and CDDP combinations were well tolerated, based on 

steady increases in BW at each time point examined (Supplementary. Figure S7B). Overall, 

SGI-110 in combination with CDDP at physiologically achievable doses was well tolerated 

in non-tumor bearing mice.

SGI-110 inhibits tumor growth in vivo

Based on the above results in non-tumor bearing mice, low dose SGI-110 (2 mg/kg) was 

used for subsequent OC xenograft experiments. CDDP-resistant A2780 cells were injected 

subcutaneously into the right flanks of 4–5 week old female nude athymic mice, and tumors 

were allowed to form as described. SGI-110 2 mg/kg and SGI-110 2 mg/kg + CDDP (2 

mg/kg or 4 mg/kg), both the QD5 and biweekly schedules, delayed (P<0.05) tumor growth 

(Fig. 3A QD5 treatment schedule and 3B biweekly treatment schedule; tumor growth curves 

for parental A2780 xenografts in Supplementary Figure S8; AUC graphs in Supplementary 

Figure S9). SGI-110 alone or in combination with CDDP was well tolerated overall in tumor 

bearing mice using either treatment schedule (Supplementary Figure S10).

The effect of SGI-110 on LINE1 methylation in PBMCs and TSG methylation and gene 

expression in xenograft tumors was examined in mice bearing parental A2780 or CDDP-

resistant A2780 xenografts. PBMC LINE1 demethylation was observed in SGI-110-treated 

mice but not in control or single agent CDDP-treated mice (Fig. 4, QD5 and biweekly 

treatment schedules). Interestingly, SGI-110 hypomethylation activity in the biweekly 

regimen was similar to the daily treatment (Fig. 4A–D, QD5 left panels; biweekly right 

panels). In mice harboring parental A2780-derived xenografts and treated with the QD5 

schedule, demethylation and reexpression of AKT1S1, RASSF1A, HOXA10, HOXA11, 

STAT5B, and MLH1 were observed (Fig. 5A). Similarly, using the biweekly schedule, 

SGI-110 treated groups showed significant demethylation and reexpression of all genes 

including BRCA1 (Fig. 5B). Essentially similar demethylation and reexpression results were 

observed for the A2780 CDDP-resistant-derived xenografts in both QD5 and biweekly 

regimens (Fig. 5C, D). CDDP treatment alone had no effect on target gene methylation in 

either biweekly or QD5 treatment of parental or CDDP-resistant A2780 cells (data not 

shown).

SGI-110 increases platinum DNA adducts in vitro

To gain additional insight into a possible mechanism by which SGI-110 resensitized OC 

models to CDDP, we analyzed CDDP adduct formation in parental A2780 cells and A2780-

CDDP resistant cells. Parental A2780 cells and A2780-CDDP resistant cells were pre-

treated with SGI-110 for 48hr and then exposed to CDDP for 2hr followed by a 0, 2, 4, and 

24hr recovery period (described in Methods section). DNA was extracted and CDDP-DNA 

adduct formation was measured by inductively coupled plasma mass spectrometry (ICP-

MS). SGI-110 pretreatment of the parental A2780 cell resulted in an increase in the level of 

CDDP adducts by approximately 40% (0 hour), 20% (2 hours) and 40% (4 hours) after 
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CDDP treatment compared to control, mock treated cells (Fig. 6A; number of CDDP 

adducts provided in Supplementary Figure S11). Despite the higher level of CDDP-DNA 

adducts in the SGI-110 treated cells, the repair rates were largely independent of SGI-110 

treatment. Similar results were obtained for A2780-CDDP resistant cells pretreated with 

SGI-110 compared to control (Fig. 6A). Interestingly, over the 24hr time, pretreatment with 

SGI-110 of both parental A2780 cells and A2780-CDDP resistant cells resulted in an overall 

increase in the level of CDDP-DNA adducts (Fig. 6A). The increased CDDP adduct 

formation may be attributed to the ability of SGI-110 to “relax” chromatin conformation, 

allowing better access of CDDP to DNA (28) with the resulting overall increase in the level 

of CDDP-DNA adducts contributing to the increase efficacy observed in the SGI-110 

treated cells.

SGI-110 treatment alters global levels of active and repressive histone marks

In addition to DNA methylation changes, it was of interest to examine whether the effects of 

SGI-110 on chromatin included altered levels of repressive and active histone transcription 

marks. We examined global levels of H3K27 trimethylation (H3K27me3), a repressive 

histone mark and the H4K16 acetylation (H4K16ac) activating mark, as acetylated histones 

are known to be associated with unmethylated DNA and correlated with a euchromatic state 

(13, 29). Western blot analysis using highly specific antibodies demonstrated that SGI-110 

treatment of parental and resistant A2780 cells decreased levels of H3K27me3 (−l0.4 and 

−0.6321-fold compared to vehicle treatment) and increased H4K16ac levels (2.71 and 1.17-

fold respectively vs. control, Fig. 6B and C). Histone H3 protein levels (control) were 

unchanged after SGI-110 treatment. These results further support the observation that 

increased CDDP adduct formation is associated with a more accessible chromatin 

environment induced by SGI-110.

DISCUSSION

Combining DNMTIs with existing chemotherapeutic agents to overcome acquired drug 

resistance in OC has been proposed by pre-clinical studies from our and other groups (10, 

15, 30–32). Recently a completed phase II trial using DNMTIs as resensitizers to traditional 

chemotherapy in patients with recurrent OC showed clinical and biological activity, 

justifying further examination of other rationally designed epigenetic treatment strategies in 

OC (16, 18). In this study, we demonstrate for the first time that the novel DNMTI SGI-110 

is an effective chemosensitizer in platinum-resistant OC cells in vitro and in vivo and 

demonstrate that SGI-110 induces demethylation of distinct drivers of OC cisplatin 

resistance. We further show that SGI-110 alone, and in combination with CDDP, is well 

tolerated and reduces tumor volumes in OC xenograft models. SGI-110 causes both global 

(LINE1) and gene-specific demethylation, and derepresses key TSGs and differentiation-

associated genes in vivo. In addition, this is the first report that increased CDDP-DNA 

adduct interactions contribute to chemosensitization by a DNMTI.

While epigenetic therapies hold promise for resensitization of chemoresistant tumors (33–

36), DNMTIs are subject to rapid intracellular deamination and aqueous instability (20). 

Compared to other nucleoside analogs currently used for cancer therapy, e.g., 5-azacytidine 
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and decitabine, SGI-110 is resistant to cytidine deaminase and has been shown to have 

antigrowth effects against bladder and colon cancer cells (21, 37). More recently preliminary 

results from a phase I/II in MDS and AML patients (38) showed that delivering SGI-110 as 

a small volume and pharmaceutically stable subcutaneous injection allows longer effective 

half-life and more extended 5-aza-dC exposure window than intravenous infusion. The 

differentiated pharmacokinetic profile offers the potential for improved biological and 

clinical activity and safety over currently available hypomethylating agents. Preliminary 

results from an ongoing phase 2 study of SGI-110 and carboplatin in platinum-resistant, 

recurrent ovarian cancer patients confirmed this improved pharmacokinetic and 

pharmacodynamic profile (39). In a recently completed phase I trial in AML and MDS 

patients, SGI-110 has also been shown to be better tolerated and demonstrate activity in 

those patients who had progressed on decitabine or 5-azacytidine (40). Our preclinical study 

further demonstrates that SGI-110 in combination with a cytotoxic is well tolerated in two 

different treatment regimens and support the concept that SGI-110 provides equivalent or 

perhaps improved drug exposure compared to 5-aza-dC when given 5X daily, as used in the 

aforementioned phase II study using decitabine and carboplatin (16).

Platinum resistance in OC is believed to be multifactorial, resulting from transmembrane 

drug efflux, impairment of DNA mismatch repair, apoptosis, and senescence-promoting 

pathways, and/or gain of base-excision repair, growth-promoting, and metabolic pathways. 

Methylation-induced silencing of various genes and pathways in OC have been reported (8), 

including LINE1 repetitive elements, BRCA1, and MLH1 as well as RASSF1A (41), HSulf-1 

(growth factor signaling) (42), and TUBB3 (class III β-tubulin). Recently discovered, 

candidate TSGs hypermethylated in OC include SPARC (secreted protein acidic and rich in 

cysteine) (43), and ANGPTL2 (angiopoietin-like protein 2) (44). Also, methylation of the 

embryonic developmentally regulated genes HOXA10 and HOXA11 was also found to be 

highly discriminative between normal and malignant ovarian tissues (45). Adding to this list 

and reaffirming other hypomethylated genes, we show that SGI-110 reactivates AKT1S1 

(subunit of mTORC1), IFNAR1 and IL2RG (receptor subunit in Jak/STAT pathway) (46), 

AKT1 (serine/threonine kinase in apoptosis) (47), STAT5B (transcription factor) (48), LRP6 

(cell surface protein in Wnt/beta-catenin signaling cascade), AXIN1 (cytoplasmic G-protein 

signalling regulator) (49), CTNNB1 (β-catenin), and CSNK1D (casein kinase I), and ZIC1 

(zinc finger protein of the cerebellum 1) (26, 27) in OC cells and mouse xenografts. These 

data support the concept that platinum resistance in OC is driven in part by hypermethylated 

TSGs.

The multifactorial nature of OC CDDP resistance presents a clinical problem. In this study, 

we use a range of OC cell lines to demonstrate that SGI-110 is able to reverse distinct 

mechanisms of CDDP resistance. We have previously demonstrated that DNA methylation 

and gene silencing of a sonic hedgehog (Hh) pathway member and putative TSG ZIC1, in 

OC tumors results in loss of negative regulation of the Hh pathway and contribute to OC 

progression (26). Here we demonstrate that ZIC1 hypermethylation is associated with CDDP 

resistance in the OAW28 and OVAR8 cell lines. We postulate that SGI-110-induced 

demethylation and reexpression of ZIC1 (Fig. 2B, D) confers negative regulation of the Hh 

signaling pathway and inhibition of OC cell proliferation. We further show that SGI-110 is 
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an effective pharmacological approach for reversing this “deep silencing” epigenetic mark 

and resensitizing chemoresistant OC cells to platinum.

Consistent with previous studies in bladder cancer cells (37), both 5-aza-dC and SGI-110 

comparably decreased IC50 values in OC cells treated with CDDP (Fig. 1A, Supplementary 

Tables S3, 4). Cisplatin functions by forming platinum-DNA lesions, forcing cells to 

undergo DNA repair or apoptosis. In addition to reactivating TSGs and other cancer-related 

genes and pathways previously silenced by promoter DNA methylation, we hypothesize that 

DNMTIs create a more active (open) chromatin environment, allowing better access of 

CDDP to DNA, and greater adduct formation. Mass spectrometry analysis supports our 

hypothesis that SGI-110 enhances platinum access to chromatin, and the observed changes 

in H3K27me3 and H4K16ac (Fig. 6B, C), repressive and active transcription marks (13, 29), 

respectively further support the concept that SGI-110 induces a “transcriptionally favorable” 

chromatin environment. Furthermore, as acetylated histones are associated with 

unmethylated DNA, nearly absent from methylated DNA regions and correlate with a 

euchromatic state (13), DNMTIs may reestablish chemotherapy drug response cascades by 

creating a more active (open) chromatin environment (5).

In summary, we show that the novel DNMTI SGI-110 sensitizes a range of OC models to 

CDDP. SGI-110 is well tolerated and has global DNA hypomethylating activity, thus 

reactivating numerous genes linked to chemotherapy response and previously associated 

with clinical outcome in OC (16–18). We provide pre-clinical and biological evidence 

supporting further investigation of hypomethylating strategies in platinum-resistant OC in 

general and particularly SGI-110, which compared to current nucleoside analogs is more 

stable, resulting in better drug exposure (37). As therapeutic options for women with 

recurrent and platinum resistant OC are extremely limited (5, 7), SGI-110 in combination 

with conventional and/or targeted therapeutics warrants further development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational relevance

Platinum-resistant ovarian cancer (OC) is uniformly fatal. Platinum resistance is 

associated with epigenetic anomalies including aberrant DNA methylation, a reversible 

epigenetic mark. We hypothesized that DNA methyltransferase inhibitors (DNMTIs) 

restore OC sensitivity to platinum and our recent phase I/II trial showed that low-dose 5-

aza-dC followed by carboplatin resulted in promising clinical activity in women with 

platinum-resistant OC. However, current DNMTIs are rapidly degraded by hydrolytic 

cleavage, deaminated by cytidine deaminase and unstable during intravenous infusion, 

limiting their potential as cancer therapeutics. SGI-110, a dinucleotide combining 5-aza-

dC and deoxyguanosine (Astex Pharmaceuticals, Inc.), is less prone to deamination and 

more stable. The current preclinical study demonstrates that pre-treatment with SGI-110 

resensitizes OC cells to cisplatin in vitro and in vivo. Mechanistically, the reversal of 

platinum resistance by SGI-110 was due to demethylation and reactivation of numerous 

chemotherapy response-related genes. Our data support clinical evaluation of this 

combination in platinum resistant OC.
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Figure 1. 5-aza-dC and SGI-110 treatment modulates CDDP sensitivity and alters DNA 
methylation and gene expression in vitro
(A). Comparison of cell growth rates of parental A2780 cells, A2780-CDDP resistant cells, 

and CP70 CDDP resistant cells treated with 5µM SGI-110, or vehicle (DMSO 1:2000) for 

48 hours followed by CDDP ranging from 0–50µM CDDP. Mean values ± S.E.M. of 8 

independent experiments in duplicate are reported. All treatments were significantly 

different, at P < 0.05, than vehicle control cells. IC50 values are listed in Supplementary 

Table S3. (B). RT-PCR analysis of MLH1 RNA levels in A2780 cells. Fold change in RNA 

levels were calculated as 2(–ΔΔCT) relative to DMSO-treated cells. (C and D). RASSF1A and 

HOXA11 were significantly demethylated by SGI-110 and the mRNA expression was 

upregulated in A2780-CDDP resistant cells. All changes are significant (P<0.05). (E). Cells 

were treated for 3-consecutive days with 0.1 µM SGI-110, 0.3 µM SGI-110 or DMSO 

(control). LINE1 methylation status was determined by pyrosequencing analysis and 

expressed as % of DMSO-treated cells. Data shown represent mean values ± S.E.M. from 

triplicate experiments.
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Figure 2. SGI-110 induces the expression of potential CDDP-resistance biomarkers in panel of 
OC cell lines
(A, B) Fold-change in mRNA expression of DOK2 and ZIC1 in OC cell lines following 3-

consecutive day treatment with 0.1µM SGI-110, 0.3µM SGI-110, 1µM SGI-110 or vehicle 

(DMSO) quantified by qRT-PCR. Data shown represent mean values ± S.E.M. from 

triplicate samples. (C) Pyrosequencing analysis of basal ZIC1 methylation levels in 

untreated OC cell lines. Data shown represent mean values ± S.E.M. from triplicate samples. 

(D) Pyrosequencing analysis of ZIC1 methylation levels in OAW28 cells, following 3-

consecutive day treatment with SGI-110. Methylation levels expressed as % of DMSO-

treated cells. Data shown represent mean values ± S.E.M. from triplicate experiments.
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Figure 3. SGI-110 and CDDP in the QD5 and biweekly treatment regimens decreases A2780-
CDDP resistant-derived xenograft tumor growth treated with
CDDP-resistant A2780 xenograft tumor volume was compared among single agent and 

combination treatment to vehicle control in two treatment schedules (*: P<0.05, **: P<0.01, 

***: P<0.001). (A). QD5 treatment. (D). Biweekly treatment. Data shown represent mean 

values ± S.E.M. from 5 tumor samples.
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Figure 4. QD5 and biweekly SGI-110 treatments induce changes in LINE1 methylation in 
PBMCs and tumor samples from mice with parental A2780 or CDDP-resistant xenografts
Tumor bearing mice were treated with SGI-110 and CDDP according to biweekly or QD5 

schedule. Blood samples were collected (biweekly: on days 1, 8, 15, 22, and end of study 

(EOS); QD5: on days 1, 8, and EOS). Tumors were collected at (EOS) after the mice were 

sacrificed. DNAs were extracted from PBMCs and tumor and subjected to bisulfite 

conversion and pyrosequencing for LINE1 methylation (*: P<0.05, **: P<0.01, ***: 

P<0.001). (A). PBMC LINE1. Left panel- parental A2780 xenograft mice with QD5 
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regimen, right panel- parental A2780 xenograft mice with biweekly regimen. (B). Tumor 

LINE1. Left panel- parental A2780 xenograft mice with QD5 regimen, right panel- parental 

A2780 xenograft mice with biweekly regimen. (C). PBMC LINE1. Left panel- A2780-

CDDP resistant xenograft mice with QD5 regimen, right panel- A2780-CDDP resistant 

xenograft mice with biweekly regimen. (D). Tumor LINE1. Left panel- A2780-CDDP 

resistant xenograft mice with QD5 regimen, right panel- A2780-CDDP resistant xenograft 

mice with biweekly regimen. Data shown represent mean values ± S.E.M. from 5 xenograft 

samples.
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Figure 5. qRT-PCR and pyrosequencing analysis of specific genes in QD5 and biweekly schedule 
mice with parental and CDDP-resistant A2780 xenografts
Selected specific genes showed significantly demethylated and upregulated from A2780 

xenografts in the 2 treatment schedules. (A). Parental A2780 xenografts from mice treated 

with QD5 schedule. (B). Parental A2780 xenografts from mice treated with biweekly 

schedule. (C). A2780-CDDP resistant xenografts from mice treated with QD5 schedule. (D). 

A2780-CDDP resistant xenografts from mice treated with biweekly schedule. Data shown 

represent mean values ± S.E.M. from 5 xenograft samples.
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Figure 6. SGI-110 increased CDDP DNA adducts and alters epigenetic marks in vitro
Parental A2780 and A2780 CDDP-resistant cells were treated in triplicate with either no 

SGI-110 or 5µM SGI-110 in fresh RPMI and grown for 48 hours. Media was removed and 

replaced with fresh RPMI containing 10µM CDDP for 2hr and were allowed to repair for 0, 

2, 4 and 24 hours DNA was extracted from cells analyzed by ICP-mass spectrometry. (A). 

SGI-110 increased CDDP DNA adducts in vitro. (B and C). Western blot and quantification 

of protein from parental A2780 and A2780 CDDP-resistant cells treated with 5µM SGI-110 

for 48hr and blotted with rabbit anti-β-tubulin, mouse anti-histone H3, and anti-acetyl-
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histone H4 (B), or anti-trimethyl-histone-H3 (C). Data shown represent mean values ± 

S.E.M. from triplicate experiments.
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