7 research outputs found

    Preliminary results of measurements by automated probes Vega 1 and 2 or particle concentration in clouds of Venus at heights 47-63 KM

    Get PDF
    Results of the preliminary processing of the Vega 1 and 2 descender data on the cloud layer structure of the Venusian atmosphere are discussed. A photoelectric counter for aerosol particles is described together with its optical and pneumatic circuits and operation algorithm. Vertical profiles of concentrations of particles with a diameter of 0.4 microns agree quantitatively with the Pioneer-Venus and Venera 9 and 10 data. Concentrations of these particles are: in the B layer, up to 190/cu cm; in the C layer, up to 10/cu cm; and in the D layer, up to 130/cu cm. Layers have sharp boundaries with a significant vertical heterogeneity of the aerosol concentration field inside them

    An Analysis of the Chemical Composition of the Atmosphere of Venus on an AMS of the Venera-12 Using a Gas Chromatograph

    Get PDF
    Eight analyses of the atmosphere of Venus were made beginning at an altitude of 42 km right down to the surface of the planet. The following were detected in the atmosphere of Venus: nitrogen in concentrations of 2.5 plus or minus 0.5 volumetric %, argon ir concentrations (4 plus or minus 2) x 10 to the minus 3 power volumetric %, CO--(2.8 plus or minus 1.4) x 10 to the minus 3 power volumetric % and SO2 in concentrations (1.3 plus or minus 0.6) x 10 to the minus 2 power volumetric %. The upper limits were estimated for the content of oxygen and water equal to 2 x 10 to the minus 3 power and 10 to the minus 2 power volumetric %, respectively

    Chemical analysis of aerosol in the Venusian cloud layer by reaction gas chromatography on board the Vega landers

    Get PDF
    The experiment on sulfuric acid aerosol determination in the Venusian cloud layer on board the Vega landers is described. An average content of sulfuric acid of approximately 1 mg/cu m was found for the samples taken from the atmosphere at heights from 63 to 48 km and analyzed with the SIGMA-3 chromatograph. Sulfur dioxide (SO2) was revealed in the gaseous sample at the height of 48 km. From the experimental results and blank run measurements, a suggestion is made that the Venusian cloud layer aerosol consists of more complicated particles than the sulfuric acid water solution does

    PhyloFisher : A phylogenomic package for resolving eukaryotic relationships

    No full text
    Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic "single-copy orthogroup" datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset
    corecore