259 research outputs found

    High-Precision Radiosurgical Dose Delivery by Interlaced Microbeam Arrays of High-Flux Low-Energy Synchrotron X-Rays

    Get PDF
    Microbeam Radiation Therapy (MRT) is a preclinical form of radiosurgery dedicated to brain tumor treatment. It uses micrometer-wide synchrotron-generated X-ray beams on the basis of spatial beam fractionation. Due to the radioresistance of normal brain vasculature to MRT, a continuous blood supply can be maintained which would in part explain the surprising tolerance of normal tissues to very high radiation doses (hundreds of Gy). Based on this well described normal tissue sparing effect of microplanar beams, we developed a new irradiation geometry which allows the delivery of a high uniform dose deposition at a given brain target whereas surrounding normal tissues are irradiated by well tolerated parallel microbeams only. Normal rat brains were exposed to 4 focally interlaced arrays of 10 microplanar beams (52 µm wide, spaced 200 µm on-center, 50 to 350 keV in energy range), targeted from 4 different ports, with a peak entrance dose of 200Gy each, to deliver an homogenous dose to a target volume of 7 mm3 in the caudate nucleus. Magnetic resonance imaging follow-up of rats showed a highly localized increase in blood vessel permeability, starting 1 week after irradiation. Contrast agent diffusion was confined to the target volume and was still observed 1 month after irradiation, along with histopathological changes, including damaged blood vessels. No changes in vessel permeability were detected in the normal brain tissue surrounding the target. The interlacing radiation-induced reduction of spontaneous seizures of epileptic rats illustrated the potential pre-clinical applications of this new irradiation geometry. Finally, Monte Carlo simulations performed on a human-sized head phantom suggested that synchrotron photons can be used for human radiosurgical applications. Our data show that interlaced microbeam irradiation allows a high homogeneous dose deposition in a brain target and leads to a confined tissue necrosis while sparing surrounding tissues. The use of synchrotron-generated X-rays enables delivery of high doses for destruction of small focal regions in human brains, with sharper dose fall-offs than those described in any other conventional radiation therapy

    Measurement of the diffractive structure function in deep inelastic scattering at HERA

    Full text link
    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in epep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of \xpom, the momentum fraction lost by the proton, of β\beta, the momentum fraction of the struck quark with respect to \xpom, and of Q2Q^2. The \xpom dependence is consistent with the form \xpoma where a = 1.30 ± 0.08 (stat)  0.14+ 0.08 (sys)a~=~1.30~\pm~0.08~(stat)~^{+~0.08}_{-~0.14}~(sys) in all bins of β\beta and Q2Q^2. In the measured Q2Q^2 range, the diffractive structure function approximately scales with Q2Q^2 at fixed β\beta. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil

    Measurement of the Q\u3csup\u3e2\u3c/sup\u3e and Energy Dependence of Diffractive Dnteractions at HERA: The ZEUS Collaboration

    Get PDF
    Diffractive dissociation of virtual photons, γ*p → Xp, has been studied in ep interactions with the ZEUS detector at HERA. The data cover photon virtualities 0.17 \u3c Q2 \u3c 0.70 GeV2 and 3 \u3c Q2 \u3c 80 GeV2 with 3 \u3c MX \u3c 38 GeV, where MX is the mass of the hadronic final state. Diffractive events were selected by two methods: the first required the detection of the scattered proton in the ZEUS leading proton spectrometer (LPS); the second was based on the distribution of MX. The integrated luminosities of the low- and high-Q2 samples used in the LPS-based analysis are ≃ 0.9 pb-1 and ≃ 3.3 pb-1, respectively. The sample used for the MX-based analysis corresponds to an integrated luminosity of ≃ 6.2 pb-1. The dependence of the diffractive cross section on W, the virtual photon-proton centre-of-mass energy, and on Q2 is studied. In the low-Q2 range, the energy dependence is compatible with Regge theory and is used to determine the intercept of the Pomeron trajectory. The W dependence of the diffractive cross section exhibits no significant change from the low-Q2 to the high-Q2 region. In the low-Q2 range, little Q2 dependence is found, a significantly different behaviour from the rapidly falling cross section measured for Q2 \u3e 3 GeV2. The ratio of the diffractive to the virtual photon-proton total cross section is studied as a function of W and Q2. Comparisons are made with a model based on perturbative QCD

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Measurement of the proton structure function F 2 at low x and low Q\u3csup\u3e 2\u3c/sup\u3e at HERA

    Get PDF
    We report on a measurement of the proton structure function F 2 in the range 3.5×10-5≤x≤4×10-3 and 1.5 GeV2≤Q 2≤15GeV2 at the ep collider HERA operating at a centre-of-mass energy of √s=300GeV. The rise of F 2 with decreasing x observed in the previous HERA measurements persists in this lower x and Q 2 range. The Q 2 evolution of F 2, even at the lowest Q 2 and x measured, is consistent with perturbative QCD. © 1996 Springer-Verlag

    Measurement of the diffractive structure function in deep inelastic scattering at HERA

    Get PDF
    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in ep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of xℙ, the momentum fraction lost by the proton, of β, the momentum fraction of the struck quark with respect to xℙ, and of Q2 in the range 6.3·10-4\u3c10-2, 0.1\u3cβ\u3c0.8 and

    Diffractive hard photoproduction at HERA and evidence for the gluon content of the pomeron

    Get PDF
    Inclusive jet cross sections for events with a large rapidity gap with respect to the proton direction from the reaction ep → jet + X with quasi-real photons have been measured with the ZEUS detector. The cross sections refer to jets with transverse energies ETjet\u3e 8 GeV. The data show the characteristics of a diffractive process mediated by pomeron exchange. Assuming that the events are due to the exchange of a pomeron with partonic structure, the quark and gluon content of the pomeron is probed at a scale ∼ (ETjet)2. A comparison of the measurements with model predictions based on QCD plus Regge phenomenology requires a contribution of partons with a hard momentum density in the pomeron. A combined analysis of the jet cross sections and recent ZEUS measurements of the diffractive structure function in deep inelastic scattering gives the first experimental evidence for the gluon content of the pomeron in diffractive hard scattering processes. The data indicate that between 30% and 80% of the momentum of the pomeron carried by partons is due to hard gluons. © 1995

    Measurement of charged and neutral current e-p deep inelastic scattering cross sections at high Q2

    Get PDF
    Deep inelastic e-p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared Q2 above 400 GeV2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections d/dQ2 are presented. From the Q2 dependence of the CC cross section, the mass term in the CC propagator is determined to be MW=76 16 13 GeV. © 1995 The American Physical Society
    corecore