144 research outputs found

    Determinação da curva de tensão-deformação verdadeira de metais isotrópicos usando corpos de prova de chapa fina

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia Mecânica.Na obtenção de certas propriedades mecânicas em chapas metálicas espessas, usualmente são utilizados corpos de prova com seção transversal circular, pois a determinação da curva de tensão-deformação verdadeira ou curva de escoamento é feita registrando a variação da carga e a redução do diâmetro do corpo de prova dúctil, seguida por uma correção da tensão na estricção pela equação de Bridgman. Contudo, para chapas mais finas, onde a confecção de corpos de prova cilíndricos torna-se inviável, a alternativa mais acessível é a utilização de corpos de prova com seção transversal retangular. A obtenção experimental da curva tensão-deformação verdadeira é complexa pois, logo após o início da estricção difusa, ocorrem duas formas distintas de deformação na seção transversal dificultando a medição direta das dimensões em tempo real de ensaio. Na primeira forma de deformação, a redução da área da seção transversal ocorre de forma proporcional e é calculada diretamente a partir da sua redução de espessura efetiva. Já na segunda, a redução da área ocorre de forma não-linear, e em decorrência disso, a seção transversal começa a se diferenciar do seu formato retangular inicial, tornando praticamente inviável o monitoramento da área real. Neste trabalho foi implementado um modelo de elementos finitos, para simular as condições do ensaio de tração em corpo de prova de chapa e obter a curva de escoamento de materiais metálicos com diferentes propriedades de encruamento. Os resultados numéricos permitira

    Fabrication and characterization of branched carbon nanostructures

    Get PDF
    Carbon nanotubes (CNTs) have atomically smooth surfaces and tend not to form covalent bonds with composite matrix materials. Thus, it is the magnitude of the CNT/fiber interfacial strength that limits the amount of nanomechanical interlocking when using conventional CNTs to improve the structural behavior of composite materials through reinforcement. This arises from two wellknown, long standing problems in this research field: (a) inhomogeneous dispersion of the filler, which can lead to aggregation and (b) insufficient reinforcement arising from bonding interactions between the filler and the matrix. These dispersion and reinforcement issues could be addressed by using branched multiwalled carbon nanotubes (b-MWCNTs) as it is known that branched fibers can greatly enhance interfacial bonding and dispersability. Therefore, the use of b-MWCNTs would lead to improved mechanical performance and, in the case of conductive composites, improved electrical performance if the CNT filler was better dispersed and connected. This will provide major benefits to the existing commercial application of CNT-reinforced composites in electrostatic discharge materials (ESD): There would be also potential usage for energy conversion, e.g., in supercapacitors, solar cells and Li-ion batteries. However, the limited availability of b-MWCNTs has, to date, restricted their use in such technological applications. Herein, we report an inexpensive and simple method to fabricate large amounts of branched-MWCNTs, which opens the door to a multitude of possible applications

    Temporal Effects of Cyclic Stretching on Distribution and Gene Expression of Integrin and Cytoskeleton by Ligament Fibroblasts In Vitro

    Get PDF
    Cyclic stretching is pivotal to maintenance of the ligaments. However, it is still not clear when ligament fibroblasts switch on expression of genes related to the mechanotransduction pathway in response to cyclic stretching. This in vitro study investigated, using ligament fibroblasts, the time-dependent changes in distribution and gene expression of β1 integrin, the cytoskeleton, and collagens after the application of 6% cyclic stretching at a frequency of 0.1 Hz for 3 hr on silicon membranes. We carried out confocal laser scanning microscopy to demonstrate changes in distribution of these components as well as quantitative real-time RT-PCR to quantify levels of these gene expression both during application of cyclic stretching and at 0, 2, 6, 12, and 18 hr after the termination of stretching. Control (unstretched) cells were used at each time point. Within 1 hr of the application of stretching, the fibroblasts and their actin stress fibers became aligned in a direction perpendicular to the major axis of stretch, whereas control (unstretched) cells were randomly distributed. In response to cyclic stretching, upregulation of actin at the mRNA level was first observed within 1 hr after the onset of stretching, while upregulation of β1 integrin and type I and type III collagens was observed between 2 and 12 hr after the termination of stretching. These results indicate that the fibroblasts quickly modify their morphology in response to cyclic stretching, and subsequently they upregulate the expression of genes related to the mechanotransduction pathway mainly during the resting period after the termination of stretching

    Intraoperative radiation therapy (IORT) for previously untreated malignant gliomas

    Get PDF
    BACKGROUND: Intraoperative radiation therapy (IORT) is one of the methods used to deliver a large single dose to the tumor tissue while reducing the exposure of normal surrounding tissue. However, the usefulness of intraoperative electron therapy for malignant gliomas has not been established. METHODS: During the period from 1987 to 1997, 32 patients with malignant gliomas were treated with IORT. The histological diagnoses were anaplastic astrocytoma in 11 patients and glioblastoma in 21 patients. Therapy consisted of surgical resection and intraoperative electron therapy using a dose of 12–15 Gy (median, 15 Gy). The patients later underwent postoperative external radiation therapy (EXRT) with a median total dose of 60 Gy. Each of the 32 patients treated with IORT was randomly matched with patients who had been treated with postoperative EXRT alone (control). Patients were matched according to histological grade, age, extent of tumor removal, and tumor location. RESULTS: In the anaplastic astrocytoma group, the one-, two- and five-year survival rates were 81%, 51% and 15%, respectively in the IORT patients and 54%, 43% and 21%, respectively in the control patients. In the glioblastoma group, one-, two- and five-year survival rates were 63%, 26% and 0%, respectively in the IORT patients and 70%, 18% and 6%, respectively in the control patients. There was no significant difference between survival rates in the IORT patients and control patients in either the anaplastic astrocytoma group or glioblastoma group. CONCLUSIONS: IORT dose not improve survival of patients with malignant gliomas compared to that of patients who have received EXRT alone

    Graphene-oxide-semiconductor planar-type electron emission device

    Get PDF
    Graphene was used as the topmost electrode for a metal-oxide-semiconductor planar-type electron emission device. With several various layers, graphene as a gate electrode on the thin oxide layer was directly deposited by gallium vapor-assisted chemical vapor deposition. The maximum efficiency of the electron emission, defined as the ratio of anode current to cathode current, showed no dependency on electrode thickness in the range from 1.8 nm to 7.0 nm, indicating that electron scattering on the inside of the grapheneelectrode is practically suppressed. In addition, a high emission current density of 1–100 mA/cm2 was obtained while maintaining a relatively high electron emission efficiency of 0.1%–1.0%. The graphene-oxide-semiconductor planar-type electron emission device has great potential to achieve both high electron emission efficiency and high electron emissioncurrent density in practical applications

    Prospective single-arm study of 72 Gy hyperfractionated radiation therapy and combination chemotherapy for anaplastic astrocytomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite intensive multimodal treatment, outcome of patients with malignant glioma remains poor, and a standard dose of radiotherapy for anaplastic astrocytoma has not been defined. In the past RTOG study (83-02), the arm of 72 Gy hyperfractionated radiotherapy (HFRT) for malignant gliomas showed better outcome than the arms of higher doses (76.8 – 81.6 Gy) and the arms of lower doses (48 – 54.4 Gy). The purpose of this study is to verify the efficacy of this protocol.</p> <p>Methods</p> <p>From July 1995, 44 consecutive eligible patients with histologically proven anaplastic astrocytoma were enrolled in this study (HFRT group). The standard regimen in this protocol was post-operative radiotherapy of 72 Gy in 60 fractions (1.2 Gy/fraction, 2 fractions/day) with concurrent chemotherapy (weekly ACNU). The primary endpoint was local control rate (LCR), and the secondary endpoints were overall survival (OS), progression-free survival (PFS) and late toxicity.</p> <p>Results</p> <p>Three-year OS of the HFRT group was 64.8% (95% confidence interval; 48.4–81.3%). Three-year PFS rate and LCR were 64.4% (95%CI: 48.4–80.3%) and 81.6% (95%CI: 69.2–94.8%), respectively.</p> <p>The number of failures at 5 years in the HFRT group were 14 (32%). The number of failures inside the irradiation field was only about half (50%) of all failures. One (2%) of the patients clinically diagnosed as brain necrosis due to radiation therapy.</p> <p>Conclusion</p> <p>The results of this study suggested that 72 Gy HFRT seemed to show favorable outcome for patients with anaplastic astrocytoma with tolerable toxicity.</p
    corecore