29 research outputs found

    Developing Allometric Equations for Teak Plantations Located in the Coastal Region of Ecuador from Terrestrial Laser Scanning Data

    Get PDF
    Traditional studies aimed at developing allometric models to estimate dry above-ground biomass (AGB) and other tree-level variables, such as tree stem commercial volume (TSCV) or tree stem volume (TSV), usually involves cutting down the trees. Although this method has low uncertainty, it is quite costly and inefficient since it requires a very time-consuming field work. In order to assist in data collection and processing, remote sensing is allowing the application of non-destructive sampling methods such as that based on terrestrial laser scanning (TLS). In this work, TLS-derived point clouds were used to digitally reconstruct the tree stem of a set of teak trees (Tectona grandis Linn. F.) from 58 circular reference plots of 18 m radius belonging to three different plantations located in the Coastal Region of Ecuador. After manually selecting the appropriate trees from the entire sample, semi-automatic data processing was performed to provide measurements of TSCV and TSV, together with estimates of AGB values at tree level. These observed values were used to develop allometric models, based on diameter at breast height (DBH), total tree height (h), or the metric DBH2 Ă— h, by applying a robust regression method to remove likely outliers. Results showed that the developed allometric models performed reasonably well, especially those based on the metric DBH2 Ă— h, providing low bias estimates and relative RMSE values of 21.60% and 16.41% for TSCV and TSV, respectively. Allometric models only based on tree height were derived from replacing DBH by h in the expression DBH2 x h, according to adjusted expressions depending on DBH classes (ranges of DBH). This finding can facilitate the obtaining of variables such as AGB (carbon stock) and commercial volume of wood over teak plantations in the Coastal Region of Ecuador from only knowing the tree height, constituting a promising method to address large-scale teak plantations monitoring from the canopy height models derived from digital aerial stereophotogrammetry

    Object-Based Greenhouse Mapping Using Very High Resolution Satellite Data and Landsat 8 Time Series

    Get PDF
    Greenhouse mapping through remote sensing has received extensive attention over the last decades. In this article, the innovative goal relies on mapping greenhouses through the combined use of very high resolution satellite data (WorldView-2) and Landsat 8 Operational Land Imager (OLI) time series within a context of an object-based image analysis (OBIA) and decision tree classification. Thus, WorldView-2 was mainly used to segment the study area focusing on individual greenhouses. Basic spectral information, spectral and vegetation indices, textural features, seasonal statistics and a spectral metric (Moment Distance Index, MDI) derived from Landsat 8 time series and/or WorldView-2 imagery were computed on previously segmented image objects. In order to test its temporal stability, the same approach was applied for two different years, 2014 and 2015. In both years, MDI was pointed out as the most important feature to detect greenhouses. Moreover, the threshold value of this spectral metric turned to be extremely stable for both Landsat 8 and WorldView-2 imagery. A simple decision tree always using the same threshold values for features from Landsat 8 time series and WorldView-2 was finally proposed. Overall accuracies of 93.0% and 93.3% and kappa coefficients of 0.856 and 0.861 were attained for 2014 and 2015 datasets, respectively

    A Quantitative Assessment of Forest Cover Change in the Moulouya River Watershed (Morocco) by the Integration of a Subpixel-Based and Object-Based Analysis of Landsat Data

    Get PDF
    A quantitative assessment of forest cover change in the Moulouya River watershed (Morocco) was carried out by means of an innovative approach from atmospherically corrected reflectance Landsat images corresponding to 1984 (Landsat 5 Thematic Mapper) and 2013 (Landsat 8 Operational Land Imager). An object-based image analysis (OBIA) was undertaken to classify segmented objects as forested or non-forested within the 2013 Landsat orthomosaic. A Random Forest classifier was applied to a set of training data based on a features vector composed of different types of object features such as vegetation indices, mean spectral values and pixel-based fractional cover derived from probabilistic spectral mixture analysis). The very high spatial resolution image data of Google Earth 2013 were employed to train/validate the Random Forest classifier, ranking the NDVI vegetation index and the corresponding pixel-based percentages of photosynthetic vegetation and bare soil as the most statistically significant object features to extract forested and non-forested areas. Regarding classification accuracy, an overall accuracy of 92.34% was achieved. The previously developed classification scheme was applied to the 1984 Landsat data to extract the forest cover change between 1984 and 2013, showing a slight net increase of 5.3% (ca. 8800 ha) in forested areas for the whole region

    Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from AlmerĂ­a (Spain)

    Get PDF
    tThis paper shows the first comparison between data from Sentinel-2 (S2) Multi Spectral Instrument (MSI)and Landsat 8 (L8) Operational Land Imager (OLI) headed up to greenhouse detection. Two closely relatedin time scenes, one for each sensor, were classified by using Object Based Image Analysis and RandomForest (RF). The RF input consisted of several object-based features computed from spectral bands andincluding mean values, spectral indices and textural features. S2 and L8 data comparisons were alsoextended using a common segmentation dataset extracted form VHR World-View 2 (WV2) imagery totest differences only due to their specific spectral contribution. The best band combinations to performsegmentation were found through a modified version of the Euclidian Distance 2 index. Four differentRF classifications schemes were considered achieving 89.1%, 91.3%, 90.9% and 93.4% as the best overallaccuracies respectively, evaluated over the whole study area

    Greenhouse Crop Identification from Multi-Temporal Multi-Sensor Satellite Imagery Using Object-Based Approach: A Case Study from AlmerĂ­a (Spain)

    Get PDF
    A workflow headed up to identify crops growing under plastic-covered greenhouses (PCG) and based on multi-temporal and multi-sensor satellite data is developed in this article. This workflow is made up of four steps: (i) data pre-processing, (ii) PCG segmentation, (iii) binary preclassification between greenhouses and non-greenhouses, and (iv) classification of horticultural crops under greenhouses regarding two agronomic seasons (autumn and spring). The segmentation stage was carried out by applying a multi-resolution segmentation algorithm on the pre-processed WorldView-2 data. The free access AssesSeg command line tool was used to determine the more suitable multi-resolution algorithm parameters. Two decision tree models mainly based on the Plastic Greenhouse Index were developed to perform greenhouse/non-greenhouse binary classification from Landsat 8 and Sentinel-2A time series, attaining overall accuracies of 92.65% and 93.97%, respectively. With regards to the classification of crops under PCG, pepper in autumn, and melon and watermelon in spring provided the best results (Fβ around 84% and 95%, respectively). Data from the Sentinel-2A time series showed slightly better accuracies than those from Landsat 8

    AssesSeg—A Command Line Tool to Quantify Image Segmentation Quality: A Test Carried Out in Southern Spain from Satellite Imagery

    Get PDF
    This letter presents the capabilities of a command line tool created to assess the quality of segmented digital images. The executable source code, called AssesSeg, was written in Python 2.7 using open source libraries. AssesSeg (University of Almeria, Almeria, Spain; Politecnico di Bari, Bari, Italy) implements a modified version of the supervised discrepancy measure named Euclidean Distance 2 (ED2) and was tested on different satellite images (Sentinel-2, Landsat 8, and WorldView-2). The segmentation was applied to plastic covered greenhouse detection in the south of Spain (AlmerĂ­a). AssesSeg outputs were utilized to find the best band combinations for the performed segmentations of the images and showed a clear positive correlation between segmentation accuracy and the quantity of available reference data. This demonstrates the importance of a high number of reference data in supervised segmentation accuracy assessment problems

    Improving georeferencing accuracy of Very High Resolution satellite imagery using freely available ancillary data at global coverage

    Get PDF
    While impressive direct geolocation accuracies better than 5.0 m CE90 (90% of circular error) can be achieved from the last DigitalGlobe’s Very High Resolution (VHR) satellites (i.e. GeoEye-1 and WorldView-1/2/3/4), it is insufficient for many precise geodetic applications. For these sensors, the best horizontal geopositioning accuracies (around 0.55 m CE90) can be attained by using third-order 3D rational functions with vendor’s rational polynomial coefficients data refined by a zero-order polynomial adjustment obtained from a small number of very accurate ground control points (GCPs). However, these high-quality GCPs are not always available. In this work, two different approaches for improving the initial direct geolocation accuracy of VHR satellite imagery are proposed. Both of them are based on the extraction of three-dimensional GCPs from freely available ancillary data at global coverage such as multi-temporal information of Google Earth and the Shuttle Radar Topography Mission 30 m digital elevation model. The application of these approaches on WorldView-2 and GeoEye-1 stereo pairs over two different study sites proved to improve the horizontal direct geolocation accuracy values around of 75%

    Geometric Accuracy Assessment of Deimos-2 Panchromatic Stereo Pairs: Sensor Orientation and Digital Surface Model Production

    Get PDF
    Accurate elevation data, which can be extracted from very high-resolution (VHR) satellite images, are vital for many engineering and land planning applications. In this way, the main goal of this work is to evaluate the capabilities of VHR Deimos-2 panchromatic stereo pairs to obtain digital surface models (DSM) over different land covers (bare soil, urban and agricultural greenhouse areas). As a step prior to extracting the DSM, different orientation models based on refined rational polynomial coefficients (RPC) and a variable number of very accurate ground control points (GCPs) were tested. The best sensor orientation model for Deimos-2 L1B satellite images was the RPC model refined by a first-order polynomial adjustment (RPC1) supported on 12 accurate and evenly spatially distributed GCPs. Regarding the Deimos-2 based DSM, its completeness and vertical accuracy were compared with those obtained from a WorldView-2 panchromatic stereo pair by using exactly the same methodology and semiglobal matching (SGM) algorithm. The Deimos-2 showed worse completeness values (about 6% worse) and vertical accuracy results (RMSEZ 42.4% worse) than those computed from WorldView-2 imagery over the three land covers tested, although only urban areas yielded statistically significant differences (p < 0.05)

    Building Tree Allometry Relationships Based on TLS Point Clouds and Machine Learning Regression

    Get PDF
    Most of the allometric models used to estimate tree aboveground biomass rely on tree diameter at breast height (DBH). However, it is difficult to measure DBH from airborne remote sensors, and is common to draw upon traditional least squares linear regression models to relate DBH with dendrometric variables measured from airborne sensors, such as tree height (H) and crown diameter (CD). This study explores the usefulness of ensemble-type supervised machine learning regression algorithms, such as random forest regression (RFR), categorical boosting (CatBoost), gradient boosting (GBoost), or AdaBoost regression (AdaBoost), as an alternative to linear regression (LR) for modelling the allometric relationships DBH = Φ(H) and DBH = Ψ(H, CD). The original dataset was made up of 2272 teak trees (Tectona grandis Linn. F.) belonging to three different plantations located in Ecuador. All teak trees were digitally reconstructed from terrestrial laser scanning point clouds. The results showed that allometric models involving both H and CD to estimate DBH performed better than those based solely on H. Furthermore, boosting machine learning regression algorithms (CatBoost and GBoost) outperformed RFR (bagging) and LR (traditional linear regression) models, both in terms of goodness-of-fit (R2) and stability (variations in training and testing samples)

    Remote Sensing of Agricultural Greenhouses and Plastic-Mulched Farmland: An Analysis of Worldwide Research

    Get PDF
    The total area of plastic-covered crops of 3019 million hectares has been increasing steadily around the world, particularly in the form of crops maintained under plastic-covered greenhouses to control their environmental conditions and their growth, thereby increasing production. This work analyzes the worldwide research dynamics on remote sensing-based mapping of agricultural greenhouses and plastic-mulched crops throughout the 21st century. In this way, a bibliometric analysis was carried out on a total of 107 publications based on the Scopus database. Different aspects of these publications were studied, such as type of publication, characteristics, categories and journal/conference name, countries, authors, and keywords. The results showed that “articles” were the type of document mostly found, while the number of published documents has exponentially increased over the last four years, growing from only one document published in 2001 to 22 in 2019. The main Scopus categories relating to the topic analyzed were Earth and Planetary Sciences (53%), Computer Science (30%), and Agricultural and Biological Sciences (28%). The most productive journal in this field was “Remote Sensing”, with 22 documents published, while China, Italy, Spain, USA, and Turkey were the five countries with the most publications. Among the main research institutions belonging to these five most productive countries, there were eight institutions from China, four from Italy, one from Spain, two from Turkey, and one from the USA. In conclusion, the evolution of the number of publications on Remote Sensing of Agricultural Greenhouses and Plastic-Mulched Farmland found throughout the period 2000–2019 allows us to classify the subject studied as an emerging research topic that is attracting an increasing level of interest worldwide, although its relative significance is still very limited within the remote sensing discipline. However, the growing demand for information on the arrangement and spatio-temporal dynamics of this increasingly important model of intensive agriculture is likely to drive this line of research in the coming years
    corecore