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Abstract  
 
This paper shows the first comparison between data from Sentinel-2 (S2) Multi Spectral Instrument 

(MSI) and Landsat 8 (L8) Operational Land Imager (OLI) headed up to greenhouse detection. Two 

closely related in time scenes, one for each sensor, were classified by using Object Based Image 

Analysis and Random Forest (RF). The RF input consisted of several object-based features 

computed from spectral bands and including mean values, spectral indices and textural features. S2 

and L8 comparisons were also extended through using a common segmentation dataset extracted 

form VHR World-View 2 (WV2) imagery to test differences only due to their specific features 

contribution. The best band combinations to perform segmentation were found through a modified 

version of the Euclidian Distance 2 index. Four different RF classifications schemes were 

considered: L8 features extracted from both L8-based segments WV2-based segments; S2 features 

extracted from both S2-based segments and WV2-based segments. The best overall accuracies, 

evaluated on the whole study area, were 89.1%, 91.3%, 90.9% and 93.4% respectively.   

 

Keywords:Sentinel-2 MSI, Landsat8 OLI, WorldView-2, Greenhouses, object-based classification, 
segmentation quality. 
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The agricultural practice of Plastic-Covered Greenhouse (PCG) is of strategic economic importance 

in semiarid regions, thus its development requires an adequate monitoring (Briassoulis et al., 2013). 

Due to its peculiar characteristics (i.e. different material, spectral signatures and local agricultural 

practice) remote sensing PCG mapping is far to be solved as demonstrated by the increasing 

number of scientific works produced in the last decade. Particularly, the topic is relevant with 

passive remotely sensed data with which PCG detection has been carried out through two main 

approaches: Pixel Based (PB) and Object Based Image Analysis (OBIA).  

PB methods have been applied both on very high resolution and medium-low resolution data. 

Indeed, recent studies were conducted by using World-View 2 (WV2) (Koc-San, 2013; Pala et al., 

2015), QuikBird and Ikonos (Agüera et al., 2008; Agüera et al., 2006; Arcidiacono and Porto, 2010; 

Carvajal et al., 2010), Landsat 8 (L8) Operational Land Imager (OLI)/Thermal Infrared Sensor 

(TIRS) (Novelli and Tarantino, 2015a, b) and Landsat Thematic Mapper data (TM) (Picuno et al., 

2011) data. Also for plastic-mulched landcover, literature shows case study through Landsat TM 

(Lu et al., 2014), L8 OLI (Chen et al., 2016) and the joint use of Landsat ETM+, OLI and Modis 

sensor data (Lu et al., 2015). 

OBIA approach is much more recent, starting with the use of true colour aerial data (Tarantino and 

Figorito, 2012) and continuing with both WV2 and GeoEye-1 stereo pairs (Aguilar et al., 2014) and 

WV2 and L8 data (Aguilar et al., 2015). The OBIA approach was also chosen in this paper since it 

has demonstrated to be more efficient in PCG detection than PB one (Wu et al., 2016).  

As far as the authors’ knowledge, this is the first paper in proposing both a comparison regarding 

PCG detection between satellite date provided by the novel Sentinel-2A (S2) MSI and L8 OLI, and 

the use of OBIA approach on an user produced Level 2A (L2A)  S2 MSI image. S2 MSI L2A data 

are atmospherically corrected (bottom of atmosphere reflectance values) by means of the sen2cor 

algorithm (Muller-Wilm et al., 2013). Indeed, recent literature has showed many studies with 

simulated S2 MSI data but at the moment, only a few scientific papers have dealt with real S2 MSI 

data (Du et al., 2016; Fernández-Manso et al., 2016; Immitzer et al., 2016). However in these 
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studies were used S2 MSI Level 1C (L1C) data for vegetation classifications purposes (Immitzer et 

al., 2016), for burn severity discrimination (Fernández-Manso et al., 2016), to detect build-up areas 

(Pesaresi et al., 2016) and to map water bodies (Du et al., 2016).  

The proposed comparisons were undertaken by applying an OBIA approach coupled with Random 

Forest (RF) classifier (Breiman). In the aforementioned OBIA studies, the segmentation quality (i.e. 

the first stage of OBIA process) was only assessed by visual inspection, or even manually digitised, 

instead of applying a quantitative approach. In this paper a further improvement was proposed for 

the segmentation quality assessment by means of discrepancy measurements. Indeed among several 

available methods, this approach is considered as one of the most useful and reliable (Clinton et al., 

2010; Liu et al., 2012; Yang et al., 2015). Specifically, this was achieved from a modified version 

of the Euclidean Distance 2 index originally proposed by Liu et al. (2012). Besides the S2 and L8 

based segmentations, it was also considered a more accurate segmentation obtained from a higher 

resolution WV2 image. In this sense, WV2 segmentation was employed as the basis to test the 

differences between S2 and L8 classifications results attributable to only their informative content. 

Very high Overall Accuracy (OA) values were obtained when testing four different RF 

classifications schemes from using a very small training set: L8 features with L8-based 

segmentation, L8 features with WV2-based segmentation, S2 features with S2-based segmentation 

and S2 features with WV2-based segmentation. 

 
 

2. Study area and Data pre-processing 
 

2.1 Study Area 
 
The study area (Figure 1) is located in the so-called “Sea of Plastic”, province of Almería (Southern 

Spain). The main economic activity is agriculture (tomato, pepper, zucchini, cucumber, aubergine, 

green bean, melon, watermelon and Chinese cabbage) under plastic covered greenhouses. Different 

typologies of plastic materials are used to cover greenhouse structures. The most common ones are 
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EVA (Ethylene-vinyl acetate) and polyethylene films both with different kind of colours and 

thickness. In this region the PCG detection is troublesome because of the variable transmissivity 

associated to the kind of plastic cover and its cleanliness. Furthermore, the variation of greenhouses 

spectral signatures over time is also due to reflectance variations experienced by cultivated plants 

under them. 

 

 
 
Figure1. Location of the study area depicted by means of the Red band of the Sentinel-2 image. Coordinate system: 
ETRS89 UTM Zone 30N 
 

2.2 Satellite data pre-processing 
 
Three optical satellite scenes from S2, L8 and WV2 were used in this case study. In each scene the 

study area was not affected by clouds presence. All the satellite data were atmospherically and 

geometrically corrected before the segmentation process. Moreover, L8 and S2 images were co-

registered to the WV2 panchromatic (PAN) image since a very accurate spatial matching is required 

to perform multi-sensor comparisons (Townshend et al., 1992; Zhang et al., 2014) 

The WV2 data (5 July 2015) consisted of a bundle combination of PAN and MultiSpectral (MS) 

images. The chosen WV2 images presented the following characteristics: Ortho Ready Standard 

Level-2A (ORS2A) format, dynamic range of 11-bit, lacking of DRA (dynamic range adjustment), 

geometric resolution of 2 m (MS) and 0.5m (PAN). WV2 was the first very high resolution 
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commercially available 8-band MS satellite with the following bands: coastal (C, 400–450 nm), 

blue (B, 450–510 nm), green (G, 510–580 nm), yellow (Y, 585–625 nm), red (R, 630–690 nm), red 

edge (RE, 705–745 nm), near infrared-1 (NIR1, 760–895 nm) and near infrared-2 (NIR2, 860–1040 

nm). WV2 digital numbers were converted to ground reflectance values by using the ATCOR 

algorithm implemented in Geomatica v. 2014 (PCI Geomatics, Richmond Hill, ON, Canada). In 

particular, the core of the correction algorithm is based on the MODTRAN (MODerate resolution 

atmospheric TRANsmission) radiative model (Berk et al., 1998). Seven Ground Control Points 

(GCP), obtained by differential GPS, and a 10-m grid spacing DEM (courtesy of the Andalucía 

Government) with 1.34m of vertical accuracy (root mean square error) were used to compute the 

sensor model and to orthorectify the WV2 MS and PAN images. The sensor model was based on 

rational functions refined by a zero order transformation in the image space (RPC0), being 

computed through Geomatica v. 2014. 

The L8 OLI scene (8 January 2016), Path 200 and Row 34, was downloaded at no cost from the 

USGS EROS web site as Level 1 Terrain Corrected (L1T) product with 30m of geometric 

resolution (Roy et al., 2014). The L8 image was composed by the following bands: coastal aerosol 

(C, 430–450 nm), blue (B, 450–510 nm), green (G, 530–590 nm), red (R, 640–670 nm), near 

infrared (NIR, 850–880 nm), shortwave infrared-1 (SWIR1, 1570–1650 nm), shortwave infrared-2 

(SWIR2, 2110–2290 nm) and cirrus (CI, 1360–1380). The OLI panchromatic band was not used in 

this study. The extracted subset was atmospherically corrected by applying the ATCOR algorithm 

and co-registered with the WV2 PAN orthoimage through Geomatica v. 2014. 

The S2 MSI image (12 January 2016, orbit R051) was downloaded at no cost from the Copernicus 

Scientific Data Hub web site as a Level 1C (L1C) product. S2 MSI L1C product is characterized by 

Top Of Atmosphere (TOA) reflectance values, cartographic projection, 12-bit dynamic range and 

tiles/granules consisting of 100 km2 ortho-images in UTM/WGS84 projection. The selected study 

area is comprised within the T30SWF granule. The MSI sensor collects up to thirteen bands with 

three different geometric resolutions: 60m, 20m and 10m. Costal (C, 443 nm), water vapour (WV, 



6 
 

1375 nm) and cirrus (CI, 1376) at 60 m resolution. Four red edge/NIR bands with central 

wavelength at 705 nm, 740 nm, 783 nm and 865 nm respectively, short wave infrared-1 (SWIR1, 

1610 nm) and short wave infrared-2 (SWIR2, 2190 nm) at 20m resolution. Blue (B, 490 nm), Green 

(G, 560 nm), Red (R, 665 nm) and Near Infrared (NIR, 842 nm) at 10m resolution. The sen2core 

algorithm (Muller-Wilm et al., 2013) was used to produce a Level 2A (L2A) SE2 MSI product 

characterized by atmospherically corrected Bottom Of Atmosphere (BOA) reflectance values. 

Finally, the S2 study area was extracted from the selected granule and co-registered with the WV2 

PAN image by using Geomatica v. 2014. 60m bands were not considered in the subsequent 

comparisons. 

 

3. Methods 
 

3.1 Segmentation algorithms 
 
In this study was used the MultiResolution Segmentation (MRS) algorithm provided by eCognition 

v. 8.8. MRS is a bottom-up region merging object algorithm (see Baatz and Schäpe (2000) and Tian 

and Chen (2007) for a complete mathematical description). It takes into account each pixel as a 

separate object and subsequently pairs of image objects are merged to form bigger segments 

(Darwish et al., 2003). However, MRS requires user driven parameters and it is not easy to obtain a 

satisfactory segmentation for the required objects (Tian and Chen, 2007). Indeed, the MRS 

algorithm output depends on three main factors or parameters: scale, shape and compactness. The 

Scale Parameter (SP) or heterogeneity criteria is the most influent since it controls the size of 

segments and thus the over-segmentation and under-segmentation error (Frauman and Wolff, 2005). 

Moreover, other input information such as the considered band combination should also be fixed 

into MRS.    

It is worth noting that the initial geometric resolution of the corrected L8 image (30m GSD) was 

increased to 1.875 m by simply halving four times the original pixel size. The same procedure was 

applied to the corrected S2 image, being the 10m and 20m GSD bands split, without any 



7 
 

resampling, in 2m GSD bands. This was necessary in order to enhance the fit between the S2-L8 

images segmentations and WV2 image segmentation. In the end, and by applying  the chessboard 

segmentation algorithm included in eCognition v.8.8., the higher resolution WV2-based 

segmentation (see 3.2 segmentation quality assessment) was applied to test the classification results 

attained from a common and accurately segmented dataset. 

 

3.2 Segmentation quality assessment 
 
The selection of the best three MRS parameters was carried out with a modified version of the 

supervised discrepancy measure named Euclidean Distance 2 (ED2) (Liu et al., 2012). As a 

supervised segmentation quality metric the modified ED2 works with a set of reference objects used 

to evaluate the goodness of the segmentation. Moreover, it can be assessed through the capabilities 

of GIS softwares. In this study 400 reference plastic covered greenhouse objects, manually 

delimitated on the corrected WV2 scene, were taken as reference objects. The 400 reference 

geometries were manually digitized considering only the plastic covered greenhouses common to 

the three satellite images. The references contours were drawn using the WV2 PAN orthoimage. 

ED2, in its original formulation, starts the computations with the definition of the corresponding 

segment dataset. For each considered image segmentation output  the dataset owned the segments 

that spatially overlap the reference polygons. A further constrain is imposed over the corresponding 

segment dataset (Clinton et al., 2010): a considered segment can be labelled as a corresponding 

segment if the area of intersection between a reference polygon and the candidate segment is more 

than half the area of either the reference polygon or the candidate segment (overlapping criteria). 

After defining the corresponding segments dataset, the ED2 index (1) evaluates the segmentation 

quality in a two dimensional Euclidean space by means of the Potential Segmentation Error (PSE) 

and the Number-of-Segments Ratio (NSR). The PSE (2) metric measures the geometric discrepancy 

as the ratio between the total area of under-segments and the total area of reference polygons. The 

under-segmentation error occurs when the contour of a reference polygon r  divides the 
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corresponding segment s  into at least two parts. Parts falling outside the reference polygon 

represent the under-segmented area (PSE = 0 means no under-segmentation). The NRS (3) 

measures the arithmetic discrepancy between the reference geometries and the candidate segments, 

being defined as the absolute difference between the number of reference polygons (m) and the 

number of corresponding segments (v) divided by the number of reference polygons. 

ED2 PSE NSR  (1)

PSE
∑ |s r |
∑ |r |

 (2)

NSR
|m v|
m

 (3)

 
A high ED2 value indicates a significant geometric discrepancy, otherwise a significant arithmetic 

discrepancy, or both. 

The implemented modification of the ED2 index was introduced to consider the side effect of the 

overlapping criteria that act as a filter both on candidate corresponding segments and on reference 

geometries. When the number of reference geometries rises, there are often reference geometries 

without any corresponding segments. In those cases the true number of employed reference 

geometries will be lower than the original one. Therefore, the ED2 index should take this into 

account to avoid bias when computing both PSE and NSR.  

In this study the overlapping criteria side effect was corrected by increasing both the PSE and NSR 

values when not all reference geometries meet the overlapping criteria. Being n the number of 

excluded reference geometries, the new computed PSE (4) and NSR (5) will be: 

PSE 	
∑|s r | n max |s r |

∑ |r |
 (4)

NSR
|m v n v |

m n
 (5)

 
Where max	 |s r |  is the maximum over segmented area found for a single reference geometry, 

v  represents the maximum number of corresponding segments found for one single reference 

geometry and ∑ |r | computes the total area of the m – n reference geometries. The modified ED2 
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index was then applied to obtain the optimized MRS parameters from which extracting the 

potentially best segmentation for each one of the three input satellite images used in this work. 

 

3.3 Training set and Features extraction 
 
Three training sets of 60, 90 and 120 segments were created from the three best estimated 

segmentations for L8, S2 and WV2.  For each training set, one half of the geometries were related 

to the “Greenhouse” class and the other half to the class labelled as “Other”. Special attention was 

given to the selection of each single training segment. They were manually selected to allow be 

considered as “pseudo-invariant” objects (similar geometry and same class) for the two classes and 

the three segmented satellite images.     

S2 and L8 comparisons were obtained from the following classification schemes: L8 with L8-based 

segmentation (L8_SEG_L8), L8 with WV2-based segmentation (L8_SEG_WV2), S2 with S2-

based segmentation (S2_SEG_S2) and S2 with WV2-based segmentation (S2_SEG_WV2). Notice 

that the geometric information provided by the WV2 segmentation (i.e., common input 

segmentation) was used to test differences only due to S2 and L8 informative content. The 

comparisons were repeated for the three different training sets.  

Features included in the classification process were computed at object level, compiling for each 

considered object a vector containing spectral information, texture data and spectral indices. 

Texture data were obtained from the Haralick Grey Level Co-occurrence Matrix (GLCM) (Haralick 

et al., 1973). The best achieved segmentation, for each classification scheme, provided the 

geometric attributes for the classification input features computed by using eCognition v8.8. Table 

1 summarizes the content of each i-th vector composed by 126 features for the S2 image and 87 

features in the case of the L8 image. The larger number of S2 object features was mainly due to the 

iteration of 20m red edge/NIR bands in the place of 10m S2 NIR band (i.e., we also tested the  20m 

red edge/NIR bands instead of the 10m NIR one to compute some indices in Table 1). 
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Table 1. Sentinel-2 (S2) and Landsat 8 (L8) object based features (feat.) 
 

 

 
3.4 Random Forest classifier design and classification accuracy assessment 
 
In this study the RF classifier was used as a tool to perform comparisons between S2 MSI and L8 

OLI scene in PCG detection, since it has performed good classification results in several remote 

sensing studies demonstrating its robustness against a high number of variables (Breiman; 

Typology Tested feat. 
L8 No. of 
feat. 

S2 No. of 
feat. 

Description Reference 

Spectral 
information 

Mean and 
Standard deviation 

(SD) 
16 20 Mean and SD of each band 

(Definiens, 
2009) 

Indices 

NDVI 
(Normalized 

Vegetation Index) 
1 5 (NIR−R) / (NIR+R) 

(Rouse Jr et 
al., 1974) 

GNDVI (Green 
NDVI) 

1 5 (NIR−G) / (NIR+G) 
(Gitelson et 
al., 2002) 

PMLI (Plastic-
mulched landcover 

index) 
1 1 (SWIR1-R) / (SWIR1+R) 

(Lu et al., 
2014) 

SWIR1_NIR 1 5 (SWIR1-NIR) / (SWIR1+NIR) This study 

SWIR2_NIR 1 5 (SWIR2-NIR) / (SWIR2+NIR) This study 

SW1_SW2_NIR 1 5 
(((SWIR1+SWIR2)/2)-NIR)/ 
(((SWIR1+SWIR2)/2)+NIR) 

This study 

CIRRUS_NIR 1 - (CIRRUS-NIR) / (CIRRUS+NIR) This study 

Texture 

GLCM_h 8 10 GLCM homogeneity all directions 
(Haralick et 
al., 1973) 

GLCM_d 8 10 GLCM dissimilarity all directions 
(Haralick et 
al., 1973) 

GLCM_e 8 10 GLCM entropy all directions 
(Haralick et 
al., 1973) 

GLCM_c 8 10 GLCM contrast all directions 
(Haralick et 
al., 1973) 

GLCM_a 8 10 
GLCM angular 2nd moment all 

directions 
(Haralick et 
al., 1973) 

GLCM_cor 8 10 GLCM correlation all directions 
(Haralick et 
al., 1973) 

GLCM_sd 8 10 
GLCM standard deviation all 

directions 
(Haralick et 
al., 1973) 

GLCM_m 8 10 GLCM mean all directions 
(Haralick et 
al., 1973) 
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Rodriguez-Galiano et al., 2012; Smith, 2010).  A detailed review of the RF classifier algorithm is 

beyond the scope of this paper. More information about the mathematical formulation and its 

parameters can be found in the literature (e.g. Breiman (2001), Dietterich (2000)). 

The RF algorithm was applied by means of STATISTICA v10® (StatSoft Inc., Tulsa, OK, United 

States). If the number of input trees is large enough by default, the software will determine the best 

final model as the one (i.e., as the specific number of trees) that yields the smallest error estimate 

for the testing sample. In this case study, a precautionary values of 500 trees (always above the best 

solution found by the software) was chosen and the number of random predictive variables was 

computed from the expression 	 1 , being M the total number of predictor variables 

(features) (Hill and Lewicki, 2007). Lastly, the input training set was divided in two sub-sets for 

each classification: approximately 2/3 of the available data were used to train the classifier and the 

remaining ones to validate the training. The last one is usually called Out-Of-Bag (OOB) data. OOB 

accuracy is an unbiased estimator of the classification OA accuracy. However, this estimation 

would be based on objects more than pixels and thus the error due to an erroneous segmentation 

would not be considered. In this way, and to provide a more reliable and complete accuracy 

indicator, pixel based confusion matrices based on ground truths manually selected for the whole 

study area were computed (Figure 2). Ground truth was built up over the geometric base of the 

corrected WV2 PAN image, taking into account the land cover of the S2 and L8 images. Finally, 

the classification accuracy assessment in this work was based on the ground truth shown in Figure 

2, using a pixel-based error matrix. Hence, the accuracy measures computed were user’s accuracy 

(UA), producer’s accuracy (PA), overall accuracy (OA) and kappa coefficient (kappa) (Congalton, 

1991) 

 

4. Results and discussion 
 
4.1 Segmentation procedure 
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The best input segmentations were computed by using the MRS algorithm and the modified ED2 

index. This task was carried out first by varying only the SP value and fixing shape and 

compactness to 0.5. Then, when a local optimum SP was found, the research continued considering: 

SP values within an interval of the local optimum, shape values from 0.1 to 0.9 and compactness 

fixed to 0.5. For each calculation, SP and shape parameters were incremented in steps of 1.0 and 0.1 

respectively. Several band combinations were tested for the three satellite data, the visible and near 

infrared bands turning out to be the most important regarding the final quality of the segmentation. 

Table 2 summarizes the characteristics of the best estimate segmentation performed over the three 

atmospherically and geometrically corrected images. The compactness parameter was always fixed 

to 0.5 since in literature there are evidences of its negligible weight in the final output of the MRS 

algorithm (if compared to shape and, above all, SP parameter) (Drăguţ et al., 2014; Liu and Xia, 

2010). Finally, for the S2 data the 10m GSD bands were considered the most valuable to produce a 

high quality segmentation results. 
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Figure 2. Manually digitized ground truth. Coordinate system: ETRS89 UTM Zone 30N 
 
Table 2. Best estimate ED2 values and their associated input bands and Scale, Shape and Compactness parameters. 

 
Satellite data Band combination No. objects Scale Shape Compactness Modified ED2

Landsat 8 Blue-Green-NIR 9596 43.0 0.3 0.5 0.424 
Sentinel 2 Blue-Green-NIR 10561 39.0 0.2 0.5 0.319 

WorldView2 Blue-Green-NIR2 10990 37.0 0.4 0.5 0.198 
 

Table 2 shows that the best greenhouses segmentation results in the case of L8 and S2 satellite 

images were obtained from using the same bands combination. Moreover, a very similar ED2 result 

(0.199) was calculated with the Blue-Green-NIR1 band combination for the WV2 data. This turned 

out be a very important finding since it was proved the stability of the best bands combination in 
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order to retrieve the best segmentation on greenhouses. It is important to highlight that this result 

was obtained from atmospherically corrected images and using the same 400 reference geometries. 

Figure 3 shows a comparison of the three selected segmentation over the same area. Figure 3 shows 

a very high visual quality for the WV2 chosen PCG segmentation. Figure 3 also depicts that the 

segmentation based on L8 features performed the worst, while the S2-based segmentation still 

provided a good visual segmentation quality. This figure allows to appreciate the capability of the 

modified ED2 index to represent the segmentation quality of both VHR and medium resolution 

images. 

 

4.2 Results from Random Forest classifier 
 
The aim of the classification stage was to test differences in S2 and L8 PCG detection results. For 

this purpose their spectral content was coupled both with their respective geometric information 

(best L8 and S2 based segmentations respectively) and with the more accurate WV2-based 

segmentation. The four combinations (L8_SEG_L8, L8_SEG_WV2, S2_SEG_S2, S2_SEG_WV2) 

were applied to the three extracted training sets. For each classification, the input geometries for the 

training set were the ones corresponding to the chosen segmentation. Figure 4 shows a subset of the 

best classifications results according to each one of the considered four combinations. S2 

classification featured a better visual quality than L8 classification for both S2 and WV2 based 

segmentations. In particular, S2  

classification proved to be more adequate to discriminate narrow objects than L8 classification by 

using both segmentation approaches. 
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resolution of the images. This fact was already reported by Wu et al. (2016) using an OBIA 

approach on a pan-sharpened Landsat 8 OLI image. In this regard, the reader should bear in mind 

the important difference between the best resolution for S2 (10m) and for L8 (30m).    

Table 3 presents the achieved OA, Kappa Index of Agreement (KIA), Producer’s Accuracy (PA) 

and User’s Accuracy (UA) for the two considered classes.  

 
Table 3. Achieved OA, KIA, PA and OA for the considered classifications. These results should be understood as true 
accuracies, and not as estimated ones, since they were computed using a ground truth comprising the whole working 
area. 

 

Scene-Segments 
combination 

training 
set 

OA 
(%) 

KIA 
PA 

Greenhouse 
(%) 

PA 
Other 
(%) 

UA 
Greenhouse 

(%) 

UA 
Other 
(%) 

L8_SEG_L8 
120 89.0 0.769 94.7 81.0 87.6 91.4 
90 89.1 0.773 93.1 83.4 88.8 89.6 
60 87.9 0.744 96.2 76.2 85.1 93.3 

L8_SEG_WV2 
120 89.8 0.791 90.6 88.8 92.0 86.9 
90 91.3 0.818 95.4 85.5 90.3 92.9 
60 90.8 0.806 95.1 84.8 89.9 92.5 

S2_SEG_S2 
120 90.9 0.864 95.1 84.8 89.9 92.5 
90 89.7 0.784 94.4 83.0 88.8 91.2 
60 89.8 0.786 94.9 82.4 88.5 92.0 

S2_SEG_WV2 
120 93.4 0.810 96.9 88.5 92.3 95.3 
90 92.6 0.844 97.0 86.2 90.9 95.3 
60 92.7 0.848 96.6 87.3 91.5 94.7 

 

The obtained OA values, ranging from 87.9% (L8_SEG_L8 with 60 training geometries) to 93.4% 

(S2_SEG_WV2 with 120 training geometries), can be considered satisfactory taking into account 

the minimum value of 85% proposed by Congalton and Green (2008).  Also KIA values showed a 

substantial and an almost perfect agreement (Landis and Koch, 1977).  Both KIA and OA 

confirmed that S2 classifications performed always better than the corresponding L8 classifications. 

In particular, the difference in accuracy between S2 and L8 increased when the common WV2-

based best segmentation was used. Since this result was achieved from the same segmentation (see 

3.1 Segmentation algorithms), the attained differences can be attributed to the better performance of 

S2 features when undertaking the RF classification training process. 
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The PA reports about the number of pixels correctly classified in a particular category as a 

percentage of the total number of pixels actually belonging to that category in the image, being 

related to omission error. The PA for the “Greenhouse” class was always better than the PA of the 

“Other” class. These result confirmed the high classification quality achieved from the RF classifier 

for the “Greenhouse” class. Moreover, the lower “Other” class PA accuracy can be explained taking 

into account its high heterogeneity. Particularly, one only class was used to address all the spectral 

variability of the totality of land covers (i.e. water, vegetation, soil and build-up areas) different 

from the “Greenhouse” class. The UA is related to the probability that a pixel classified in a map 

actually represent that category on the ground. It is also related to commission error (error in field). 

UA values show that the reliability of the classification was very high for both classes, although the 

“Other” class featured slightly better UA values. Only in the case of the L8 with WV2-based 

segmentation (60 training segments), the UA of the “Greenhouse” class was greater than the 

corresponding UA for the “Other” class.  

Although the training datasets were constituted of a very little number of geometries, the results 

were not very sensitive to the number of geometries. This was especially true with S2 data in which 

the best accuracies were always coupled with the 120 training geometries, whereas for the L8 data 

the best results were achieved from the training sets composed of 90 geometries. 

RF classifier is also capable to estimate the features importance in the training process by means of 

the Gini index and the OOB estimation (Rodriguez-Galiano et al., 2012). Normalized features or 

ratios were always among the most important 10 features for both L8 and S2. However, the 

consistency of normalized features in S2 classification was stronger as compared to L8 outputs. In 

fact, among the top ten L8 most significant features, it was frequent to find  mean-value spectral 

features and textural features.  

This result seems to point out a better S2 stability in order to efficiently extract plastic-covered 

greenhouses regardless atmospheric conditions. 



 

Figure 4. Co
ETRS89 UTM

To the be

detection b

The high 

effectivene

omparisons o
M Zone 30N. 

est knowled

between S2 

geometric

ess of S2 an

of the best cl

dge of the 

 and L8 sat

 contributi

nd L8 startin

assification re

5.

authors, th

tellite data t

ion of WV

ng from a co

esults for the

 

.Conclusion
 

his study p

through app

V2 based 

ommon and

e four consid

ns 

roposes a 

plying an O

segmentati

d very good 

ered combina

first compa

OBIA appro

ion was e

segmented 

ations. Coord

arison rega

oach and RF

employed t

image data

18

 
dinate system:

arding PCG

F classifier.

to test the

aset. 

8 

: 

G 

. 

e 



19 
 

The accuracy values achieved using very small training sets were very high for both sensors, also 

thanks to the modified ED2 index used to quantitatively assess the reliability of the best estimate 

segmentations. This can be considered as a further confirmation of the relevant contribution of the 

segmentation process in the final PCG detection. In this sense, another finding of this work was 

related to proving that Blue, Green and NIR bands are strongly related to the best segmentation of 

greenhouses for atmospherically corrected S2, L8 and WV2 data. Future research can benefit of this 

information to save computation time. 

Overall, the final results showed that S2 performed better than L8, particularly when the best 

common segmentation from WV2 was used for both satellites.  

The accuracy of the results obtained in this study makes this approach highly recommended for 

PCG mapping and detection. Further research will be focused both on the definition of new and 

more performant segmentation quality metrics and in the assessment of the best S2 and L8 features.   
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