87 research outputs found

    Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation

    Get PDF
    Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA), which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation. © 2014 Keyel et al

    Autoimmunity in CD73/Ecto-5′-Nucleotidase Deficient Mice Induces Renal Injury

    Get PDF
    Extracellular adenosine formed by 5′-ectonucleotidase (CD73) is involved in tubulo-glomerular feedback in the kidney but is also known to be an important immune modulator. Since CD73−/−mutant mice exhibit a vascular proinflammatory phenotype, we asked whether long term lack of CD73 causes inflammation related kidney pathologies. CD73−/−mice (13 weeks old) showed significantly increased low molecule proteinuria compared to C57BL6 wild type controls (4.8≥0.52 vs. 2.9±0.54 mg/24 h, p<0.03). Total proteinuria increased to 5.97±0.78 vs. 2.55±0.35 mg/24 h at 30 weeks (p<0.01) whereas creatinine clearance decreased (0.161±0.02 vs. 0.224±0.02 ml/min). We observed autoimmune inflammation in CD73−/−mice with glomerulitis and peritubular capillaritis, showing glomerular deposition of IgG and C3 and enhanced presence of CD11b, CD8, CD25 as well as GR-1-positive cells in the interstitium. Vascular inflammation was associated with enhanced serum levels of the cytokines IL-18 and TNF-α as well as VEGF and the chemokine MIP-2 (CXCL-2) in CD73−/−mice, whereas chemokines and cytokines in the kidney tissue were unaltered or reduced. In CD73−/−mice glomeruli, we found a reduced number of podocytes and endothelial fenestrations, increased capillaries per glomeruli, endotheliosis and enhanced tubular fibrosis. Our results show that adult CD73−/−mice exhibit spontaneous proteinuria and renal functional deterioration even without exogenous stress factors. We have identified an autoimmune inflammatory phenotype comprising the glomerular endothelium, leading to glomeruli inflammation and injury and to a cellular infiltrate of the renal interstitium. Thus, long term lack of CD73 reduced renal function and is associated with autoimmune inflammation

    A-Kinase Anchoring in Dendritic Cells Is Required for Antigen Presentation

    Get PDF
    BACKGROUND: Dendritic cells (DC) are the most potent antigen presenting cells (APC) of the immune system. Prostaglandin E(2), cyclic AMP, and protein kinase A (PKA) have all been shown to regulate DC maturation and activity. In other cells, the ability of these molecules to convey their signals has been shown to be dependent on A-kinase anchoring proteins (AKAPs). Here we present evidence for the existence and functional importance of AKAPs in human DC. METHODOLOGY/PRINCIPAL FINDINGS: Using immunofluorescence and/or western analyses we identify AKAP79, AKAP149, AKAP95, AKAP LBC and Ezrin. We also demonstrate by western analysis that expression of AKAP79, AKAP149 and RII are upregulated with DC differentiation and maturation. We establish the functional importance of PKA anchoring in multiple aspects of DC biology using the anchoring inhibitor peptides Ht31 and AKAP-IS. Incubation of protein or peptide antigen loaded DC with Ht31 or AKAP-IS results in a 30-50% decrease in antigen presentation as measured by IFN-gamma production from antigen specific CD4(+) T cells. Incubation of LPS treated DC with Ht31 results in 80% inhibition of TNF-alpha and IL-10 production. Ht31 slightly decreases the expression of CD18 and CD11a and CD11b, slightly increases the basal expression of CD83, dramatically decreases the LPS stimulated expression of CD40, CD80 and CD83, and significantly increases the expression of the chemokine receptor CCR7. CONCLUSIONS: These experiments represent the first evidence for the functional importance of PKA anchoring in multiple aspects of DC biology

    Adora2b Adenosine Receptor Engagement Enhances Regulatory T Cell Abundance during Endotoxin-Induced Pulmonary Inflammation

    Get PDF
    Anti-inflammatory signals play an essential role in constraining the magnitude of an inflammatory response. Extracellular adenosine is a critical tissue-protective factor, limiting the extent of inflammation. Given the potent anti-inflammatory effects of extracellular adenosine, we sought to investigate how extracellular adenosine regulates T cell activation and differentiation. Adenosine receptor activation by a pan adenosine-receptor agonist enhanced the abundance of murine regulatory T cells (Tregs), a cell type critical in constraining inflammation. Gene expression studies in both naïve CD4 T cells and Tregs revealed that these cells expressed multiple adenosine receptors. Based on recent studies implicating the Adora2b in endogenous anti-inflammatory responses during acute inflammation, we used a pharmacologic approach to specifically activate Adora2b. Indeed, these studies revealed robust enhancement of Treg differentiation in wild-type mice, but not in Adora2b−/− T cells. Finally, when we subjected Adora2b-deficient mice to endotoxin-induced pulmonary inflammation, we found that these mice experienced more severe inflammation, characterized by increased cell recruitment and increased fluid leakage into the airways. Notably, Adora2b-deficient mice failed to induce Tregs after endotoxin-induced inflammation and instead had an enhanced recruitment of pro-inflammatory effector T cells. In total, these data indicate that the Adora2b adenosine receptor serves a potent anti-inflammatory role, functioning at least in part through the enhancement of Tregs, to limit inflammation

    Participation of Actin on Giardia lamblia Growth and Encystation

    Get PDF
    BACKGROUND:Microfilaments play a determinant role in different cell processes such as: motility, cell division, phagocytosis and intracellular transport; however, these structures are poorly understood in the parasite Giardia lamblia. METHODOLOGY AND PRINCIPAL FINDINGS:By confocal microscopy using TRITC-phalloidin, we found structured actin distributed in the entire trophozoite, the label stand out at the ventral disc, median body, flagella and around the nuclei. During Giardia encystation, a sequence of morphological changes concurrent to modifications on the distribution of structured actin and in the expression of actin mRNA were observed. To elucidate whether actin participates actively on growth and encystation, cells were treated with Cytochalasin D, Latrunculin A and Jasplakinolide and analyzed by confocal and scanning electron microscopy. All drugs caused a growth reduction (27 to 45%) and changes on the distribution of actin. Besides, 60 to 80% of trophozoites treated with the drugs, exhibited damage at the caudal region, alterations in the flagella and wrinkles-like on the plasma membrane. The drugs also altered the cyst-yield and the morphology, scanning electron microscopy revealed diminished cytokinesis, cysts with damages in the wall and alterations in the size and on the intermembranal space. Furthermore, the drugs caused a significant reduction of the intensity of fluorescence-labeled CWP1 on ESV and on cyst wall, this was coincident with a reduction of CWP1 gene expression (34%). CONCLUSIONS AND SIGNIFICANCE:All our results, indicated an important role of actin in the morphology, growth and encystation and indirectly suggested an actin role in gene expression

    CB2 Cannabinoid Receptors Contribute to Bacterial Invasion and Mortality in Polymicrobial Sepsis

    Get PDF
    BACKGROUND:Sepsis is a major healthcare problem and current estimates suggest that the incidence of sepsis is approximately 750,000 annually. Sepsis is caused by an inability of the immune system to eliminate invading pathogens. It was recently proposed that endogenous mediators produced during sepsis can contribute to the immune dysfunction that is observed in sepsis. Endocannabinoids that are produced excessively in sepsis are potential factors leading to immune dysfunction, because they suppress immune cell function by binding to G-protein-coupled CB(2) receptors on immune cells. Here we examined the role of CB(2) receptors in regulating the host's response to sepsis. METHODS AND FINDINGS:The role of CB(2) receptors was studied by subjecting CB(2) receptor wild-type and knockout mice to bacterial sepsis induced by cecal ligation and puncture. We report that CB(2) receptor inactivation by knockout decreases sepsis-induced mortality, and bacterial translocation into the bloodstream of septic animals. Furthermore, CB(2) receptor inactivation decreases kidney and muscle injury, suppresses splenic nuclear factor (NF)-kappaB activation, and diminishes the production of IL-10, IL-6 and MIP-2. Finally, CB(2) receptor deficiency prevents apoptosis in lymphoid organs and augments the number of CD11b(+) and CD19(+) cells during CLP. CONCLUSIONS:Taken together, our results establish for the first time that CB(2) receptors are important contributors to septic immune dysfunction and mortality, indicating that CB(2) receptors may be therapeutically targeted for the benefit of patients suffering from sepsis

    Coronin-1A Links Cytoskeleton Dynamics to TCRαβ-Induced Cell Signaling

    Get PDF
    Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of αβT cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-κB (IκB). Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts αβT cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages

    Rab11 and Actin Cytoskeleton Participate in Giardia lamblia Encystation, Guiding the Specific Vesicles to the Cyst Wall

    Get PDF
    The encystation process is crucial for survival and transmission of Giardia lamblia to new hosts. During this process, vesicular trafficking and the cytoskeleton play important roles. In eukaryotic cells, intracellular transport is regulated by proteins, including Rab-GTPases and SNAREs, which regulate vesicle formation along with recognition of and binding to the target membrane. Cytoskeletal structures are also involved in these processes. In this study, we demonstrate the participation of Rab11 in the transport of encystation-specific vesicles (ESVs). Additionally, we demonstrate that disruption of actin microfilaments affects ESVs transport. The modification of actin dynamics was also correlated with a reduction in rab11 and cwp1 expression. Furthermore, down-regulation of rab11 mRNA by a specific hammerhead ribozyme caused nonspecific localization of CWP1. We thus provide new information about the molecular machinery that regulates Giardia lamblia encystation. Given our findings, Rab11 and actin may be useful targets to block Giardia encystation

    Vimentin and PSF Act in Concert to Regulate IbeA+ E. coli K1 Induced Activation and Nuclear Translocation of NF-κB in Human Brain Endothelial Cells

    Get PDF
    IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities.IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus.These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis

    Ste20-Related Proline/Alanine-Rich Kinase (SPAK) Regulated Transcriptionally by Hyperosmolarity Is Involved in Intestinal Barrier Function

    Get PDF
    The Ste20-related protein proline/alanine-rich kinase (SPAK) plays important roles in cellular functions such as cell differentiation and regulation of chloride transport, but its roles in pathogenesis of intestinal inflammation remain largely unknown. Here we report significantly increased SPAK expression levels in hyperosmotic environments, such as mucosal biopsy samples from patients with Crohn's disease, as well as colon tissues of C57BL/6 mice and Caco2-BBE cells treated with hyperosmotic medium. NF-κB and Sp1-binding sites in the SPAK TATA-less promoter are essential for SPAK mRNA transcription. Hyperosmolarity increases the ability of NF-κB and Sp1 to bind to their binding sites. Knock-down of either NF-κB or Sp1 by siRNA reduces the hyperosmolarity-induced SPAK expression levels. Furthermore, expression of NF-κB, but not Sp1, was upregulated by hyperosmolarity in vivo and in vitro. Nuclear run-on assays showed that hyperosmolarity increases SPAK expression levels at the transcriptional level, without affecting SPAK mRNA stability. Knockdown of SPAK expression by siRNA or overexpression of SPAK in cells and transgenic mice shows that SPAK is involved in intestinal permeability in vitro and in vivo. Together, our data suggest that SPAK, the transcription of which is regulated by hyperosmolarity, plays an important role in epithelial barrier function
    corecore