13 research outputs found

    Development of optical microchip sensor for biomolecule detection

    Get PDF
    Optical sensors play vital roles in many applications in today’s world. Photonic technologies used to design and engineer optical sensing platforms can provide distinctive advantages over conventional detection techniques. For instance, when compared to electronic and magnetic sensing systems, optical sensors require physically smaller equipment and have the capability for delivering more analytical information (e.g. spectroscopic signatures). In addition, demand for low-cost and portable bio-analyte detections is a growing area for applications in healthcare and environmental fields. Among other factors to achieve reliable results in terms of selectivity and sensitivity is key for the detection of bio-analytes with analytical relevance. Commonly used bio-analytical techniques (e. g. high performance liquid chromatography) have been appropriately designed based on qualitative and quantitative analysis. However, the requirement of expensive equipment, and complexity of procedures (e.g. biomolecule labelling, calibrations, etc.) restrict the board applicability and growth of these techniques in the field of biosensing. Optical sensors tackle these problems because they enable selective and sensitive detection of analytes of interest with label-free, real-time, and cost-effective processes. Among them, optical interferometry is increasingly popular due label-free detection, simple optical platforms and low-cost design. An ideal substrate with high surface area as well as biological/chemical stability against degradation can enable the development of advanced analytical tools with broad applicability. Nanoporous anodic alumina has been recently envisaged as a powerful platform to develop label-free optical sensors in combination with different optical techniques. This thesis presents a high sensitive label-free biosensor design combining nanoporous anodic alumina (NAA) photonic structures and reflectometric interference spectroscopy (RIfS) for biomedical, food and agricultural applications. NAA is a suitable optical sensing platform due to its optical properties; a high surface area; its straightforward, scalable, and cost-competitive fabrication process, and its chemical and mechanical stability towards biological environments. Our biosensor enables real-time screening of any absorption and desorption event occurring inside the NAA pores. A proper selection of bio-analytes were able to be detected using this platform which offers unique feature in terms of simplicity and accuracy. The most relevant components of this thesis are categorised as below: 1. Self-ordered NAA fabrication and detection of an enzymatic analyte as a biomarker for cancer diagnosis: Fabrication of NAA photonic films using two step electrochemical anodization and chemical functionalisation. Detection of trace levels of analyte enzyme and its quantification by selective digestion. The NAA photonic film with the enzyme acts as a promising combination for a real-time point-of-care monitoring system for early stages of disease. 2. NAA rugate filters used to establish the binding affinity between blood proteins and drugs: Design, fabrication, and optimisation of NAA anodization parameters using sinusoidal pulse anodization approach (i.e. anodization offset and anodization period) to produce rugate filter photonic crystals that provide two comparative sensing parameters. Establishment of highly sensitive and selective device capable for drug binding assessments linked to treating a wide range of medical conditions. 3. NAA bilayers and food bioactive compound detection: Design, fabrication, and optimisation of NAA anodization parameters (i.e. anodization time and number of anodization steps) to obtain NAA bilayered photonic structures that display the effective response of NAA geometry with different types of nano-pore engineering. The photonic properties of the NAA bilayer were studied at each layer of nano-structure under specific binding of human serum albumin and quercetin as target agent. 4. Single nucleotide polymorphism (SNP) detection: The design and implementation of a Ligation-Rolling Circle Amplification assay to detect a single nucleotide polymorphism associated with insecticide resistance in a pest beetle species, Tribolium castaneum. This proof-of-concept SNP detection assay has the potential to provide a method compatible with a biosensor platform such as NAA. This demonstrates the first step towards the potential development of a genotyping biosensor, and a real-world application of insect insecticide resistance monitoring. The results presented in this thesis are expected to enable innovative developments on NAA sensing technology that could result in highly sensitive and selective detection systems for a broad range of bio-analytes detections.Thesis (Ph.D.) (Research by Publication) -- University of Adelaide, School of Chemical Engineering, 201

    Association of Helicobacter Pylori Infection with Endothelial Dysfunction in Metabolic Syndrome

    Get PDF
    Background: Metabolic risk factors play a critical role in metabolic syndrome (MetS), and endothelial dysfunction is important in its development. On the other hand, Helicobacter pylori (H. pylori) infection has an essential role in MetS. The goal of present study was to evaluate the effect of H. pylori infection on endothelial dysfunction in MetS patients. Methods: Based on the International Diabetes Federation (IDF) criteria, 80 MetS patients (59 females and 21 males, mean age: 48.94 ± 10.00 years) were selected. Plasma samples were assayed for H. pylori IgG using the ELISA method. Endothelial function was also evaluated by measuring plasma concentrations of endothelin-1 (ET-1), E-selectin, and intracellular adhesion molecule-1 (ICAM-1) using ELISA method. Also, NO2– and NO3– concentrations were measured by Griess method. Results: Fifty patients (62.5%) had H. pylori infection. Plasma concentrations of ET- 1, NO2–, and NO3– were significantly higher in MetS patients with positive H. pylori infection than in MetS patients with negative H. pylori infection (ET-1: 2.92 ± 2.33 vs 1.9 ± 1.4 pg/ml; P = 0.037; NO2–:19.46 ± 7.11 vs 15.46 ± 4.56 μM; P = 0.003; NO3–: 20.8 ± 10.53 vs 16.85 ± 6.03 μM, P = 0.036). However, plasma concentrations of ICAM-1 and E-selectin did not show any significant difference in the two groups. Conclusion: The results showed a relationship between H. pylori infection and endothelial dysfunction. H. pylori infection can lead to atherosclerosis by causing chronic inflammation and affecting the factors contributing to the MetS

    Fabrication and Optimization of Bilayered Nanoporous Anodic Alumina Structures as Multi-Point Interferometric Sensing Platform

    Get PDF
    Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA) to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time). The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA), which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS) signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT) using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA)-modified NAA (i.e., sensing element) and quercetin (i.e., analyte). BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT) to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different concentrations of quercetin. The multi-point sensing performance of BL-NAAs was determined for each pore layer, with an average sensitivity and low limit of detection of 600 nm (mg mL−1)−1 and 0.14 mg mL−1, respectively. BL-NAAs photonic structures have the capability to be used as platforms for multi-point RIfS sensing of biomolecules that can be further extended for simultaneous size-exclusion separation and multi-analyte sensing using these bilayered nanostructures

    Recent Progress in Nanotechnology for COVID-19 Prevention, Diagnostics and Treatment

    No full text
    The COVID-19 pandemic is currently an unprecedented public health threat. The rapid spread of infections has led to calls for alternative approaches to combat the virus. Nanotechnology is taking root against SARS-CoV-2 through prevention, diagnostics and treatment of infections. In light of the escalating demand for managing the pandemic, a comprehensive review that highlights the role of nanomaterials in the response to the pandemic is highly desirable. This review article comprehensively discusses the use of nanotechnology for COVID-19 based on three main categories: prevention, diagnostics and treatment. We first highlight the use of various nanomaterials including metal nanoparticles, carbon-based nanoparticles and magnetic nanoparticles for COVID-19. We critically review the benefits of nanomaterials along with their applications in personal protective equipment, vaccine development, diagnostic device fabrication and therapeutic approaches. The remaining key challenges and future directions of nanomaterials for COVID-19 are briefly discussed. This review is very informative and helpful in providing guidance for developing nanomaterial-based products to fight against COVID-19.Applied Science, Faculty ofNon UBCMechanical Engineering, Department ofReviewedFacultyPostdoctora

    Characterisation of Arthrobacter sp. S1 that can degrade α and β-haloalkanoic acids isolated from contaminated soil

    No full text
    A bacterium identified as Arthrobacter sp. S1 by 16S rRNA was isolated from contaminated soil. This is the first reported study that Arthrobacter could utilize both α- halocarboxylix acid (αHA) [2,2-dichloropropionic acid (2,2-DCP) and D,L-2-chloropropionic acid (D,L-2-CP)] and β-halocarboxylix acid (βHA) [3-chloropropionic acid (3CP)] as sole source of carbon with cell doubling times of 5±0.2, 7±0.1, and 10±0.1 h, respectively. More than 85 % chloride ion released was detected in the growth medium suggesting the substrates used were utilized. To identify the presence of dehalogenase gene in the microorganism, a molecular tool that included the use of oligonucleotide primers specific to microorganisms that can grow in halogenated compounds was adapted. A partial putative dehalogenase gene was determined by direct sequencing of the PCR-amplified genomic DNA of the bacterium. A comparative analysis of the deduced amino acid sequence data revealed that the amino acid sequence has a low identity of less than 15 % to both group I and group II dehalogenases, suggesting that the current putative dehalogenase amino acid sequence was completely distinct from both α- haloacids and β-haloacids dehalogenases. This investigation is useful in studying the microbial populations in order to monitor the presence of specific dehalogenase genes and to provide a better understanding of the microbial populations that are present in soil or in water systems treating halogenated compounds

    Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization

    No full text
    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism

    Identification of putative Cof-like hydrolase associated with dehalogenase in Enterobacter cloacae MN1 isolated from the contaminated sea-side area of the Philippines

    No full text
    Aims: The present study aimed at molecular identification of putative Cof-like hydrolase associated with dehalogenase gene from a bacterium that was isolated from a contaminated sea-side area in the Philippines. The bacterium was subjected to 16S rRNA gene sequence analysis for identity of the genus and species. Methodology and results: Based on basic microbiological analysis and 16S rRNA sequence determination, strain MN1 showed high sequence identity to Enterobacter cloacae. This is the first reported study that Enterobacter could degrade 2,2-dichloropropionate (2,2-DCP). A putative dehalogenase gene like was identified by direct sequencing and analysis of the PCR-amplified genomic DNA of the bacterium. A comparative analysis of the sequence data revealed that the amino acid sequence is closely related to several Cof-like hydrolase associated with L-specific dehalogenases. Conclusion, significance and impact of study: Current study may suggest that the hydrolase may have similar function to dehalogenase. However, further analysis like enzyme assay need to be carried out to confirm this. Putative dehalogenase gene can be amplified using PCR technique provided that the specific primers designed were used
    corecore