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ABSTRACT 

Optical sensors play vital roles in many applications in today’s world. Photonic technologies 

used to design and engineer optical sensing platforms can provide distinctive advantages over 

conventional detection techniques. For instance, when compared to electronic and magnetic 

sensing systems, optical sensors require physically smaller equipment and have the capability 

for delivering more analytical information (e.g. spectroscopic signatures). In addition, demand 

for low-cost and portable bio-analyte detections is a growing area for applications in healthcare 

and environmental fields. Among other factors to achieve reliable results in terms of selectivity 

and sensitivity is key for the detection of bio-analytes with analytical relevance. Commonly 

used bio-analytical techniques (e. g. high performance liquid chromatography) have been 

appropriately designed based on qualitative and quantitative analysis. However, the 

requirement of expensive equipment, and complexity of procedures (e.g. biomolecule 

labelling, calibrations, etc.) restrict the board applicability and growth of these techniques in 

the field of biosensing. Optical sensors tackle these problems because they enable selective and 

sensitive detection of analytes of interest with label-free, real-time, and cost-effective 

processes. Among them, optical interferometry is increasingly popular due label-free detection, 

simple optical platforms and low-cost design. An ideal substrate with high surface area as well 

as biological/chemical stability against degradation can enable the development of advanced 

analytical tools with broad applicability. Nanoporous anodic alumina has been recently 

envisaged as a powerful platform to develop label-free optical sensors in combination with 

different optical techniques.  

This thesis presents a high sensitive label-free biosensor design combining nanoporous 

anodic alumina (NAA) photonic structures and reflectometric interference spectroscopy (RIfS) 

for biomedical, food and agricultural applications. NAA is a suitable optical sensing platform 

due to its optical properties; a high surface area; its straightforward, scalable, and cost-
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competitive fabrication process, and its chemical and mechanical stability towards biological 

environments. Our biosensor enables real-time screening of any absorption and desorption 

event occurring inside the NAA pores. A proper selection of bio-analytes were able to be 

detected using this platform which offers unique feature in terms of simplicity and accuracy. 

The most relevant components of this thesis are categorised as below: 

1. Self-ordered NAA fabrication and detection of an enzymatic analyte as a biomarker for 

cancer diagnosis: Fabrication of NAA photonic films using two step electrochemical 

anodization and chemical functionalisation. Detection of trace levels of analyte enzyme and 

its quantification by selective digestion. The NAA photonic film with the enzyme acts as a 

promising combination for a real-time point-of-care monitoring system for early stages of 

disease.  

2. NAA rugate filters used to establish the binding affinity between blood proteins and drugs: 

Design, fabrication, and optimisation of NAA anodization parameters using sinusoidal pulse 

anodization approach (i.e. anodization offset and anodization period) to produce rugate filter 

photonic crystals that provide two comparative sensing parameters. Establishment of highly 

sensitive and selective device capable for drug binding assessments linked to treating a wide 

range of medical conditions. 

3. NAA bilayers and food bioactive compound detection: Design, fabrication, and optimisation 

of NAA anodization parameters (i.e. anodization time and number of anodization steps) to 

obtain NAA bilayered photonic structures that display the effective response of NAA 

geometry with different types of nano-pore engineering. The photonic properties of the 

NAA bilayer were studied at each layer of nano-structure under specific binding of human 

serum albumin and quercetin as target agent. 
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4. Single nucleotide polymorphism (SNP) detection: The design and implementation of a 

Ligation-Rolling Circle Amplification assay to detect a single nucleotide polymorphism 

associated with insecticide resistance in a pest beetle species, Tribolium castaneum.  This 

proof-of-concept SNP detection assay has the potential to provide a method compatible 

with a biosensor platform such as NAA. This demonstrates the first step towards   the 

potential development of a genotyping biosensor, and a real-world application of insect 

insecticide resistance monitoring. 

The results presented in this thesis are expected to enable innovative developments on NAA 

sensing technology that could result in highly sensitive and selective detection systems for a 

broad range of bio-analytes detections.  
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CHAPTER 1. 

Introduction and Literature Review 

Chapter-1 provides introductory components of the thesis showing significant of the general 

field of the study followed by a comprehensive literature review of the current knowledge and 

discussing different methodologies used in this field. Finally, the outline of thesis structure and 

brief contents aid aims and objectives of the individual chapter is summarized.  
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1.1. Biosensors Background 

A biological sensor, more commonly known as a biosensor, can be defined as an analytical 

device that combines a biological element with a physiochemical detector which can be easily 

understood by an observer 1. A typical biosensor basically consists of a) a sensing platform; 

which enables to the target bio-element to bind or be captured, and b) a bio-transducer; which 

measures that recognition event and c) produce a readable signal. The signal can be an 

electronic, optical signal or visual colorimetric detection. The signal is then interpreted by a 

monitoring system; which displays the binding event as final output 1-3 (Figure 1.1). In general, 

biological receptors are involved with sensing platform and transducer to generate the 

corresponding detection signals. Looking into the past, the concept of biosensors underwent a 

transformation about 50 years ago, when analytical devices combined with transducers were 

developed to detect a concentration of chemical species in biological sources4-8. The idea 

unveiled the broader view to developing more efficient pharmaceutical, healthcare, and 

environmental sensing tools. In order to design effective biosensors, specific features have been 

typically investigated. For example, transducer type, labelling strategy, and surface chemistry 

are critical factors to consider in the development of biosensors 2,4.  

 

Figure1.1. Schematic illustration of a typical label-free sensor and its main three components. 
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There are many types of biosensors based on detection principle or transducers but two 

most widespread types, are based on optical and electrochemical detection. Although 

electrochemical analytical sensing features greater sensitivity and precision for detection, these 

detection techniques require complicated and multi-faceted procedures. Optical sensing 

technology has been demonstrated to provide small footprint device, low power consumption, 

low cost, and easy preparation 9. Due to those advantages, they are becoming more popular 

alternatives to electrochemical-based sensors in many biological applications10. In the past few 

decades, optical sensing has been adopted for use with a variety of bio-elements and using 

different types of spectroscopy for detection which are widely utilized in the field of 

biotechnology, biomedical applications and pharmaceuticals 11-12. The other advantage of this 

method of optical transduction is eligibility to supply real-time monitoring, label-free, and 

parallel determination of sensing parameters13.   

     Most biosensors use a labelling strategy, which relies on radioactive or fluorescent tag 

molecules that are attached to the detection agent to screen the sensing reaction. However, 

although this label-based strategy can provide very sensitive detection limit (e.g. even up to 

single molecule), the labelling process has a high cost and is a labour intensive function14, 

which cause un-attractive feature of this method for specific biological applications. These 

limitations were addressed by label-free sensing devices, which do not require label 

molecules15. Label-free biosensing devices are usually based on changes in physical property 

such as density, refractive index and wavelength changes 11, 16, 17. All these alterations act in 

response to binding of a receptor to the target molecule.  

The optical biosensors have been demonstrated to be powerful analytical devices widely 

employed for the measurement of biomolecules, pharmaceutical agents, nucleic acid molecules 

for biomedical, pharmaceutical, environmental screening and toxic agent detection. 18-22. In 
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addition to their analytical applications, optical biosensors become a key tool for 

characterization and quantifying biomolecular interactions and other fundamental phenomena 

22. Typically optical sensors can be classified based on detection principles including: UV-vis 

spectroscopy, optical waveguide spectroscopy, surface enhanced Raman spectroscopy, 

Refractometric, Surface Plasmon Resonance (SPR), reflectometric interference spectroscopy 

(RIfS), photoluminescence, and etc. 23-27. Among all these techniques, SPR due to its high 

sensitivity has been most commonly utilised for a wide range of commercial applications 

specifically biological detection. However, SPR method suffers from some difficulties (e. g. 

failure to detect signals for fast reactions, the bulkiness of instrumentation and expensive, metal 

thickness accuracy for coatings, large sample volumes, and difficult to combine with other 

detection methods) 28-30. 

Recently, miniature and portable label-free biosensors are being developed to open the 

ability of on-site support for self-diagnosis applications. The need for fast diagnostics created 

an intensive research focus for point-of-care like devices. An active area of research with 

regards to these types of point-of-care devices is in the materials used to generate for optical 

signals and their association with highly selective and sensitive optical platforms. 

Nanostructural materials such as porous silicon, Si nanowires, gold nanoparticles, titania 

nanotubes, and nanoporous anodic alumina, graphene sheets, etc, are explored for this 

application 31-35. Amongst this range of nano-optical materials, the combination of nanoporous 

substrates with optical sensing devices has been promising. For example, the integration of 

RIfS-based detection method with nanoporous materials depicted a clear functionality in 

biological trend 26, 27. In this regard, the nanoporous structure provides a high surface area to a 

volume ratio which increases the possibility for a higher number of receptors, and therefore an 

increased possibility of detecting a receptor-analyte interaction. Herein, RIfS has been proven 

as a sensitive and simple sensing method integrated nanoporous structure 26. This optical 
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technique is based on white light interference directed vertically at a nanoporous thin film. This 

causes partial reflection of beams at certain wavelength which results in an interference 

spectrum which can be detected by single beam and microprocessor spectrometry. This 

resulting interference spectrum allows one to observe the binding behaviour of interacting 

molecules. Any association or dissociation of analyte molecules causes a change in physical 

thickness of a thin layer. The physical thickness monitoring fulfils a mathematical calculation 

which also depends on the effective refractive index of the thin film. This screening can provide 

real-time processing with exclusive dynamics about the binding reaction 36.      

This PhD thesis is mainly focused on exploring RIfS using electrochemically engineered 

nanoporous anodic alumina (NAA) for platform a low-cost, easy-to-use, simple, portable, and 

sensitive biosensing system for versatile biomedical and industrial applications. For this 

purpose, NAA platform is designed and engineered with optimised pore structures features 

such as pore size geometry to advance their performance for RIfS based biosensing. Major 

perspectives of this thesis are; a) fabrication and optimization of pore geometry for NAA 

structural engineering to enhance optical sensitivity, b) surface chemistry modification for high 

selectivity towards biomolecules, c) real-time screening of the binding event between receptor 

and biomolecule analytes using RIfS detection method. d) isolation and purification of target 

agents from living sources (i.e. genetic material from insect cells), The following literature 

review will provide a comprehensive collection on the efforts for developing NAA structural 

engineering and surface chemistry modification strategies for bio-analytes based on RIfS 

optical system.  
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1.2. Nanoporous Anodic Alumina (NAA) 

1.2.1. History of NAA 

NAA is a self-ordered material with honeycomb-like structure and high density arrays of 

uniform and parallel nanopores formed by electrochemical oxidation of aluminium in liquid 

electrolytes (anodization) in particular conditions (i.e. electric current, voltage, temperature, 

and etc.). Anodization of aluminium has been discovered since early last century in the 1930s 

and further elaborated in 1950s-1970s for corrosion protection and as decorative coatings 37-39.  

Starting in the late 1980s, NAA began to attract interest in the field of nanotechnology due to 

its uniform nanostructure particularly for the deposition of the arrays of nanowires 40-42. Later 

in the 1990s, nanofabrication of NAA template appeared 43-47. Then, NAA becomes very 

popular for design and synthesis of different nanostructures (i.e. nanowires and nanotubes). 

NAA-based nanomaterials have a wide range of applications including nanoelectronics, 

photonics devices, energy conversion to nanoporous substrates, nanotags for bioanalysis, and 

so on 48-52. Currently, the use of NAA in nanotechnology continues to grow rapidly. The 

significance of NAA in science and technology has been understood by the fact that its 

chemistry and structure could be precisely and accurately engineered at the nanoscale over very 

large areas and in practical formats, enabling development of new materials and products with 

desired properties and functionality 53. 

1.2.2. Nanofabrication of NAA 

The development of aluminium anodization created a huge interest to discover more about 

this material and as a result, more efforts were put in to research its chemical and physical 

properties 39. Electrochemical anodization on aluminium have been studied in a wide array of 

acidic electrolyte including oxalic acid, phosphoric acid, citric acid and sulfuric acid using both 
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AC and DC power supply 25, 27, 54. The effort placed to understand the mechanism of aluminium 

anodic oxide construction as well as the effect of fabrication parameters on porous morphology 

through current density and temperature. Figure 1.2 illustrates the pore geometry features of 

aluminium oxide structure. Geometry criteria of NAA such as pore diameter dp, interpore 

distance dint, and pore length Lp have been considered as significant features affecting NAA 

sensing properties 55-61.   

Two-step fabrication process of nanoporous anodic alumina structure was discovered by 

Masuda and colleagues as the method to prepare highly ordered porous structure with a high 

level of reproducibility 47, 62. This approach elucidated that the surface of aluminium substrate 

forms like dimples and pits during the first step of anodization. Although, after the first step 

the nanoporous oxide layer is removed in a selective way, the created patterns act as nucleation 

and reproduction sites for self-ordering of cylindrical nanopores. The advantages of this two-

step anodization approach are as a low-cost production, simple and easy process, and capability 

of large-scale fabrication for commercial purposes. This can compete to techniques like 

lithography which are expensive and complicated. A simple illustrative scheme of 

electrochemical setup (Figure 1.2c) is presented to produce NAA with cylindrical pore 

structure (Figure 1.2b). It is schematically shown that required size of Al foil is packed in a 

specific holder, so called anodization cell. Whilst, the anodization cell contains a certain 

aqueous acid electrolyte, is connected to a power supply as an anode electrode and platinum 

wire which is installed in anodization cell acts as a cathode electrode. This designed connection 

with the application of specific voltage causes electrochemical circuit. This reaction starts 

nucleation and grows perpendicular nanopores on Al surface material.  
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Figure 1.2. Schematic illustration of a basic electrochemical anodization cell for NAA 

fabrication (Source [27]). (a) Geometry criteria of NAA (e.g. pore diameter dp, interpore 

distance dint and pore length Lp). (b) Top and cross-sectional view (scales bar 400 nm and 

250 nm, respectively).  

In terms of the nanostructure of anodised alumina, scanning electron microscopy (SEM) 

technology displayed hexagonal arranged shape cells with cylindrical nanopores 

perpendicularly to the aluminium substrate (Figure 1.3).  
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Figure 1.3. SEM images of typical cell configuration of perfectly ordered NAA fabricated 

using electrochemical anodization. a) Hexagonal arrangement of NAA. b) Cross sectional view 

of a typical NAA. Both images show the perfect organisation of nanopores with cylindrical 

structure (source [63]).  

The electrochemical synthesis of the self-ordered and perpendicular nanopores is basically 

a steady state reaction of two main processes; the first one is the foundation of aluminium oxide 

(Al2O3) and second step of oxide layer dissolution at the specific pore nucleation sites 64. This 

mechanism creates a barrier layer of Al2O3 which grows at the interface of Al through 

electrostatic attraction between charged ions (e. g. Al3+ and O2-). However, as the second 

process, the produced Al2O3 dissolves at the interface of electrolyte. This results in a 

distribution of electric field leading to localized nanopore growth. On Second, Al2O3 is 

dissolved at the alumina-electrolyte interface due to uneven distribution of electric field on the 

oxide layer resulting in localized heating and dissolution. Therefore, the formation of Al2O3 is 

continuous reactions of dissolution of Al2O3 and diffusion of Al cations whilst generating 

hydrogen (H2) and oxygen (O2) molecules.  The following equations explain the 

electrochemical reactions during NAA production:  

i) Formation of alumina (alumina- aluminium interface) 

-

322
6e(aq)6H (s)OAlO(l)H2Al(s)  3  (1.1) 
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ii) Dissolution of alumina (alumina-electrolyte interface) 

)(3)(2
2

3
lOHaqAl(aq)6H(s)OAl

32
   (1.2) 

iii) Diffusion of aluminium cations (oxide barrier layer) 

-3
6eaqAl2Al(s)  

)(2  (1.3) 

iv) Hydrogen production (electrolyte-platinum interface as cathode) 

)(3
2

gH6e(aq)6H
-   (1.4) 

v) Oxygen production (electrolyte-alumina interface as anode) 

               2O2- (aq) + 4e-  2O2 (g)                                                                                                                (1.5) 

The produced NAA pores are determined as certain structural parameters such as pore 

length; Lp, pore diameter; dp, interpore distance; dint and oxide barrier layer thickness; Sobl). 

These parameters are described in Figure 1.3a. It is well-proved that these nanopores structural 

parameters can be accurately tuned via anodization conditions. For example, it has been 

reported that pore diameter and pore length can be modified in the range of 10-400 nm and 

from nm to μm, respectively. Barrier layer thickness also ranges between 30-250, and interpore 

distance between 50-600 nm 11-13, 25. As mentioned above, this ability to tune the pore structure 

of NAA is a result of anodization parameter modification 64, 65.  

In principal, the anodization parameters including applied current density, temperature, 

electrolyte type and concentration and have been known the most effective parameters in order 

to control the pore geometry of the NAA. Generally, an aqueous solution of oxalic acid 

(H2C2O4), phosphoric acid (H3PO4), and sulphuric acid (H2SO4) used to prepare NAA with 

specific geometry at 40, 195, and 25 voltage, respectively 66-71.  Besides all these acid 

electrolytes, other diverse acid electrolytes have been utilised for the process of NAA 

fabrication, including tartaric, malonic, citric, maleic and sulfamic acids 72-77. However, it was 
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understood that the nanopores from the second group of electrolytes are not well-ordered.  On 

the other hand, low or mild electric field condition, called mild anodization (MA) and high 

electric field condition, called hard anodization (HA) addressed slow and fast growth rate of 

nanopores, respectively. MA regime offers slow and rate-limited ionic transport reactions 

across Al-Al2O3 interface whilst HA processed nanopore growth tens of time higher 54, 56-59, 78. 

Note that, the pore geometry can be engineered by post processing steps like wet chemical 

etching which provides specific pore shape and dimensions. Therefore, a variety of nanopore 

geometries have been fabricated by modifying of anodization conditions including funnel 

tubes, multi-structured nanopores and periodically perforated pores 79-85.  

1.2.3. Structural Engineering of NAA  

It is explained in the previous part that by applying a different range of electrochemical 

anodization approaches, specific pore geometry (i.e., porosity, thickness, and multilayered 

structure) can be designed. The ability to engineer the geometry of NAA structure has 

encouraged researchers to exclusively produce nanostructures with specific optical properties 

such as distributed Bragg reflectors (DBRs), rugate filters, microcavities and waveguides, 

multilayered NAA and other photonic and optical structures 27. To the purpose, the type and 

protocol of anodization (i. e., alternating current, voltage or duration of anodization process) 

and anodization profiles (i.e., sinusoidal, pseudo-sinusoidal, stepwise, saw-like and so on) are 

mainly considered 27. The specifically design of morphology and geometry of NAA and 

consequent tune light interaction lead to optimise and develop optical properties of NAA (i.e., 

effective medium) 86-89.   
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Cyclic anodization approach using periodic and slow changes of electrical signals opened 

up an innovative perspective offering controlled morphology of pore structure with periodic 

changes of shapes and diameters 80. This periodic modulation could effectively modulate light 

reflection with periodic changes of shapes and diameters. Many exciting applications 90 based on 

these nanostructured periodic structures of NAA, the Distributed Bragg reflector NAA- DBR 

structure was demonstrated with periodically compositional of MA and HA regimes, studies 

showed that porosity of NAA can be tailored with modified light reflection and two different 

active ranges of wavelength. This matter depicted the important role of the nanostructure with 

optical characteristics. Through adjusting anodization temperature between 7 to 14°C during 

NAA-DBR fabrication was also possible to tune the transmission spectra in the specific desired 

wavelength range 91. The stacked multiple layers of DBR could cover the transmission peak in 

the whole visible light range. Again, utilizing cyclic anodization approach, a simplified voltage 

cycle NAA-DBRs were fabricated in depth nanopore engineering, which resulted to modulate 

transmittance criteria in the range of visible to near infrared 92. Ferré-Borrull and colleagues 

further investigated the transmittance modulation of NAA-DBRs considering anodization time, 

number of anodization cycles, and pore widening time 93. By means of this investigation, it 

obtained the contribution of a higher number of cycles in order to enhance the range of 

wavelengths that can be reflected. Anodization temperature was also recognized as a crucial 

factor which linearly rates 42 nm wavelength redshift per 1°C. However, the anodization 

temperature change did not affect noticeably the obtained ranges of reflected wavelengths or 

subsequent pore widening.  

NAA rugate filters (NAA-RFs) were fabricated by others and our group under 

galvanostatic anodization using sinusoidal current signal showing new possibility to engineer 

complex NAA structures and generate exciting optical and photonic properties unlike NAA-

DBRs, the photonic structure of NAA-RFs, displayed single section reflectivity that is highly 
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dependent on the period of a sinusoidal current profile as well as pore opening time 94. The 

sinusoidal anodization profile was used for fabrication of NAA-RFs controlling different 

anodization parameters such as anodization period, anodization offset, and anodization current 

density that showed reflection response across UV-visible-infrared spectrum 95.  

The other efforts focused on controlling pore diameter modulation of NAA structure 

utilising discontinuous anodization approach 96. In that study, the generation of pore 

modulation was performed by voltage pulses under MA and thermal-acidic conditions. The 

pore modulation morphology could be controlled by tuning the relax time between consecutive 

voltage pulses. Thus, the origin of the resulting NAA structure was attributed to the formation 

of a gel-like layer under particular thermal-acidic conditions.  Another innovative geometry 

control approach for NAA structure is reported multistep mild anodization 97. Using this 

approach, anodization profile could be precisely tailored by interactive control of anodising 

time, etching time, and cyclic times obtain funnel, pencil, parabola, cone, and trumpet pore 

shapes. Funnel-like pore geometry of NAA is reported in several studies 81, 82, 98. This multilayered 

NAA structure has larger pore diameter on the top layer and smaller pore diameter at the bottom 

layer which is generally produced by following sequentially anodising and pore widening steps. 

Using the modulation approach a precisely controlled of pore length was also carried out 81.  

Inverted type of funnel-like NAA structures were fabricated with increasing pore diameter 

from top to bottom 98. This fabrication approach utilised by the combination of annealing 

temperature, anodization steps and chemical etching. The fabrication method was performed 

by taking advantage of varied chemical dissolution rates of NAA with annealing temperature 

leading in-depth engineering of nanopores. Similar to the typical funnel-like NAA, the 

resulting inverted funnel-like NAA featured a multilayered structure with photonic properties. 

The other represented multilayered of NAA are stratified, hierarchical, and three-dimensional 
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which have been fabricated using innovative anodization techniques 79-85, 97-99. Hierarchical 

pore geometry of NAA depicted hexagonal concavities of interior nanopores which generated 

by changing anodization parameters (e. g. anodization voltage, type and concentration of acid 

electrolyte) during the second step of anodization 99. 

Figure 1.4 illustrates SEM images of some of the most representative NAA structures 

fabricated by different electrochemical anodization approaches. The figure obviously shows 

the effect of mild/hard anodization regimes and anodization parameters on pore length, pore 

diameter and constant interpore distance involved in engineered NAA structure.  
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Figure 1.4. (a) Schematic illustration for cross-sectional and top view SEM images for 

hierarchical NAA structure (b) and (c) Schematic illustration for cross-sectional and top view 

SEM images for stratified inverted NAA structure (d) (e) cross-sectional and top view SEM 

images for 3D NAA structure by switching the anodization between MA and HA regimes 

(sources [99], [98], and [79]). 

1.3. Surface Modification of NAA  

During the chemical dissolution of NAA with electrolytes (e. g. oxalic acid, sulfuric acid 

and phosphoric acid), some electrolytic impurities (e. g. oxalate, sulfate, and phosphate) remain 

and distribute as stratified-structure of NAA. It is shown that the chemically stratified structure 
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of NAA exists as gradient layers where outer layer are predominantly accumulated by 

impurities than inner layers, which are mainly pure Al2O3 (Figure 1.5). This onion-like 

configuration is introduced as a variety of layers 98. A self-colouring strategy with the aid of 

photoluminescence characteristics measurement established the concept for presence 

incorporated chemical layers after specific chemical etching steps 100.  

 

Figure 1.5. Schematic illustration of chemically stratified structure of NAA. (a) Top and cross-

sectional view of NAA showing four different stage of NAA dissolution under acidic condition, 

which is configured onion-like structure (source [98]). (b) The distribution of color in a NAA 

pore based on gravity, indication coloured materials locate in outer region with decreasing 

steeply in the next regions (source [100]).   

The presence of acidic impurities in the stratified-structure of NAA makes it possible to 

activate hydroxyl groups (-OH) on the outer layer. Hydroxyl groups can be easily modified 

with different chemical functionalisation protocols. Chemical functionalisation of NAA 

surface is required due to two main reasons including NAA structure protection against acidic 

analytes and creating selective surface chemistry for specific analytes. The surface chemistry 

modification techniques for NAA has been reviewed in two major division including wet-

chemical and gas-phase techniques 84. Jani et al. categorized typical chemical techniques as 

self-assembled monolayers, polymer modifications, electrochemical deposition of metals, sol-

gel chemistry and electro-less metal deposition.  Other techniques in gas-phase include 
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chemical vapour deposition, thermal vapour deposition, atomic layer deposition and plasma 

polymerization. These techniques can be combined for the specific application (e. g. molecular 

separation, biosensing and drug delivery and others) 101, 102. Note that, the further surface 

functionalisation of NAA is required for immobilisation of specific target molecules (Figure 

1.6).  

 
Figure 1.6. The range of approaches can be utilised for NAA surface modification via two 

main categories of gas phase and wet chemical technique (source [84]).  

Herein, a brief review of the main approach used to modify NAA surface chemistry in this 

project namely gas phase technique is presented. Two methods of chemical vapour deposition 

and metal sputtering are mainly considered. Chemical vapour deposition (CVD) technique 

provides the chemically selective surface of NAA for binding to specific target analyte 
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molecules whereas sputter coating of metal is used for enhancing the reflection intensity of the 

NAA based biosensing platform. 

1.3.1. Chemical Vapour Deposition (CVD)  

Chemical vapour deposition involves the reaction of gaseous reagents which are activated 

by light, heat or plasma and in order to form a stable film on a substrate 103. This technique 

offers fast growth rate of molecules deposition with excellent control of coating thickness and 

homogenous coverage. A number of applications including carbon layers growth on anodic 

aluminium oxide (AAO), aminosilanes, phenylphosphonic acid and others have been 

successfully prepared onto NAA surface for specific applications 104-107. Amongst these surface 

activating agents, aminosilanes are identified as stable molecules due to activation of strong 

covalent bonds of Al-O-Si (Figure 1.7). The approach employs hydroxyl groups of inheriting 

NAA surface by reacting them with aminosilanes and then subsequent functionalisation can be 

easily possible using primary amine modification protocols. Furthermore, it is proven that 

silanisation of NAA for subsequent bio-molecule immobilisation is preserved rout 108-110.   In 

this thesis, silanisation process is selected due to its stability and versatility towards 

biomolecules during sensing process.  
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Figure 1.7. Chemical vapour deposition technique and its application for silanisation of NAA. 

A) Schematic diagram of CVD process illustrating formation of a stable solid coating from 

liquid/solid chemical by gas phase reaction which occurs near a heated surface (source [103]). 

B) Multi-layered surface functionalization of multi-layered NAA using three types of silane 

molecules (source [107]).  

 

Several strategies to tailor surface wettability of NAA has been explored in order to tune 

its hydrophobicity characteristics. For example, octadecyltrimethoxysilane were utilized to 

enhance the hydrophobicity behaviour for membrane concepts 111. In that way, the nanopore 

alumina membrane was so hydrophobic that they were not wetted by water. In the case of 

mineral oil separation, transport mechanism involved in the solvent extraction of oil-phase 

which are confined to the pores. Subsequently, the membrane showed better selective transport 

than the typical membrane. Other hydrophilic groups used with silane for functionalisation are 

reported as poly (ethylene-glycol)-silanes, ethoxy-silanes and others 112, 113. Besides tuning the 

surface wettability of NAA membrane, biocompatibility control of silane functionalised of pore 
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structures is also investigated as a function of cellular immunoisolation 114. The results depicted 

silane functionalisation is a safe method for biomolecules under vivo and vitro conditions. 

Therefore, they were vastly used for immobilisation biomolecules such as cells and biotin 115, 

116.  

Amino-propyltryethoxy silane (APTES) is the most popular used silane for the purpose of 

surface chemistry modification to attach biomolecules using amino groups. APTES-modified 

NAA templates have been used to immobilize nanoparticles (e. g. Au and Pd nanoparticles), 

or nanotubes inside nanopores in order to make a conductive structure 117. Losic and co-workers 

demonstrated the surface modification of NAA with layers of silanization. Using different 

types of silanes (e. g. N-triethoxysilylpropyl-(O-polyethyleneoxide) urethane (PEG-silane), 

pentafluorophenyl-dimethylpropylchloro-silane (PFPTES), and APTES), a multi-functionalities 

surface was obtained 107. These studies showed that NAA can be precisely modified with desired 

surface chemistry (silane molecules) and used for immobilization of biomolecules required for 

biosensing. 

1.3.2. Metal Sputtering Deposition  

Sputtering deposition known as a physical vapour deposition has been explored using a 

variety of metals including silver, gold, platinum, nickel, titanium, etc. This solid modification 

approach is frequently used to improve the chemical stability of NAA material, conductivity, 

electrochemical, transport and more important making highly attractive surface for optical 

properties 118. In this regards, it provides a convenient and powerful tool for fast and controlled 

deposition of metal thin-films. For example, pieces of research have been exploited hexagonal 

arrangement of NAA membranes with the silver coating to prepare SERS substrates 119, 120. It 

is reported an Ag layer deposited film by using a direct-current magnetron sputtering system 

had high Raman signal due to abundance of hot spots from silver nanoparticles 119, Figure 1.8, 
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Other studies have discussed sensor’s sensitivity for preparing active sensing platforms for 

fibre Bragg grating (FBG) sensors where coated FBG showed significant optical response 

compared to standard FBG 121-123. Furthermore, the sputtering deposition capability was 

enormous for using it as a fantastic model for enhancement of optical spectral of NAA coated 

with gold, especially gold offered a perfect surface chemistry for biomolecules 124, 26.  

 
Figure 1.8. SEM images obtained from the Ag-coated AAO membranes formed using different 

Ag sputtering times of (a) 15 and (b) 20 min. The scale bar is 100 nm. (c) SERS spectra of 

Rhodamine 6G-adsorbed Ag-coated polyacrylic acid membranes corresponding to those in (a) 

and (b), demonstrating the intensity variation of the SERS signal at 1510 cm-1. 

1.4. NAA Platform for Optical Biosensing 

NAA provides many advantages due to their chemical stability for biosensing providing 

stable optical signals without further passivation with biomolecules conditions 125. NAA can 

interact with light in a stable signal and generate extraordinary reflectance, transmittance, and 

absorbance. In particular, NAA with photoluminescence (PL) light emission display inimitable 

optical interactions. It is worth noticing that the light interaction of NAA is highly relevant to 

its chemical and structural features. NAA displays excellent transmission, reflection, wave-
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guiding, and photoluminescence properties 25, 27, 126. These optical responses met the 

requirements for designing highly selective and sensitive biosensors. In addition, the flexibility 

of NAA based on miniaturization and integration into microfluidic devices make another 

interesting feature for developing portable biosensing devices 11-13, 67. Other optical advantages 

of NAA are that the nanoporous structure can be engineered using different electrochemical 

anodization approaches as exclusively mentioned in previous parts and enhance its inherit 

optical properties. This is the fundamental aspect to obtain higher sensitive biosensors. 

Additionally, the high surface area of NAA pores allows biomolecules to accommodate a large 

number. This requires the capability of chemical assembly to operate the analyte-receptor 

binding event.  

1.4.1. NAA Based Optical Sensors  

Regarding these excellent optical features of NAA mentioned in previous sections this 

section will review the new generation of optical biosensors based on NAA platform has been 

explored for the purpose of bio-analytes detection. In this context, NAA optical biosensors 

displayed significant sensitivity and selectivity detection in a range of applications such as 

environmental, clinical, food control and so on. They are mostly focused on integrating 

Localised Surface Plasmon Resonance (LSPR), photoluminescence (PL), Surface-enhanced 

Raman scattering (SERS) and RIfS techniques with NAA platform (Figure 1.9). 

Comprehensive review studies about optical sensing based on NAA is provided in reference 25, 

27. Furthermore, Table 1, summarized the most advances in the development of optical NAA 

sensors for the application of biomolecules.  

In overall, NAA combined with RIfS generated well-resolved peaks capable of label-free 

and real-time in situ monitoring of binding events. This caused high interests to use NAA-RIfS 

sensing system in particular through miniaturisation for real-life applications.    
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Table1. Summary of optical sensing systems based on nanoporous anodic alumina, their 

detection technique, bio- applications, performance and references. 

Optical Technique Analyte Detection 

Limit/Concentration 

Ref. 

PL Trypsin 0.1 mg∙mL-1 [127] 

 Trypsin 40 µg∙mL-1 [128] 

 DNA 100 mM [129] 

LSPR Avidin 10 µg∙mL-1 [130] 

 Anti-5-Fluorouracil 100 mg∙mL-1 [130] 

 DNA 10 pM [131] 

 BSA 60 nM [132] 

 Invertase 10 nM [133] 

 Melittin 100 ng∙mL-1 [130] 

SERS Para-Nitrophenol 10-6 M [134] 

 Cancer cell Single cell [135] 

 Cytochrome c 1 mg∙mL-1 [136] 

RIfS DNA 2 nmol∙cm-2 [137] 

 Tumor Cells 1000 cells∙mL-1 [36] 

 Immunoglobulin 0.1 mg∙mL-1 [138] 
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Figure 1.9. Four optical sensing techniques combined with NAA for developing highly 

sensitive optical sensors, a) SPR based on NAA (source [139]), b) PL based on NAA (source 

[140], c) SERS based on NAA (source [141]), and d) RIfS based on NAA (source [142] 26.  
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1.5. Reflectometric Interference Spectroscopy (RIfS) 

1.5.1. Principle 

Reflectometric Interference Spectroscopy (RIfS) is a simple and robust analytical method 

in terms of label-free and high sensitivity. This optical detection method is based on white light 

interference at transparent thin layers. The unique structure of thin films causes light 

reflection/transmittance, called interference phenomenon 143, 144. This phenomenon is inspired 

by nature when the interference of reflected beams at translucent membrane cover results in 

colourful sight for butterflies, beetles, and natural pearls and causes its advantage to display 

vivid colours 145, 146. For example, the wings of butterflies consist of a translucent and 

colourless membrane which is covered by thin layers of lamellae. Light reflects from lamellae 

layers which result in the interference of reflected beams and cause the beautiful colour of 

wings 146. Similarly, this can be simulated using an artificial thin film and shining white light 

to get reflected from two interfaces layers including the thin film-artificial material interface 

(bottom of the thin film) and thin film-air interface (top of the thin film) (Figure 1.10a). The 

light reflects at two interfaces because of the difference in their optical length and results 

alternative of the maxima and minima in the reflection pattern. These light reflections create 

the reflection pattern which demonstrates the differential interferometry at specific 

wavelengths. The measurement of the optical pattern is calculated as Fabry-Pérot interference 

by the Fabry-Pérot interference equation, given below. 

𝑂𝑇𝑒𝑓𝑓 = 2𝑛𝑒𝑓𝑓𝐿𝐶𝑜𝑠𝜃 = 𝑚𝜆      (1.6) 

According to this equation, neff is the effective refractive index of NAA, L is the physical 

thickness of NAA as the thin film and m is the order of the fringe located at the representative 

wavelength λ 147-149. According to Eq. (1.6), any changes in the physical thickness and in the 
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effective refractive index of the thin film directly appear as a wavelength peak shift of the 

interference. This interference shift is known as the basis of label-free detection and real-time 

and in situ screening of analyte-receptor binding events of molecules using RIfS. A generic 

biosensor based RIfS comprises of a sensing platform functionalized and immobilized receptor 

for specific detection of biomolecule analytes such as proteins, antibodies, oligonucleotides, or 

pharmaceutical agents either through covalent binding or simple absorption as a result of 

changes in the effective refractive index of the thin film-sensing platform which is perceived 

in interference pattern shift 147. These informative changes in RIfS not only depicts qualitative 

report about the interaction event of analyte-receptor but also provides quantitative analysis 

because the proportional shift in the reflection fringes directly depends to the amount of 

absorbed analyte on the thin film surface.  The integration of sensing platform in a flow cell 

allows a real-time screening of any binding/unbinding event onto the surface.  

 
) 

Figure 1.10. (a) A schematic showing Fabry-Perot interference of light rays reflected from 

top and bottom layer of a thin film. (b) Fabry-Perot interference from NAA (source [150]. 
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Nanoporous thin films such as nanoporous alumina, porous silicon, and titania nanotube 

arrays are able to generate Fabry-Perot interference fringes with interference spectra, which is 

also conducted by Eq. (1.5) (Figure 1.10b). Nanoporous films for specific capturing target 

analytes act in the same way as explained before for ordinary planar films. The local effective 

refractive index changes when binding receptor-analyte occur. This induces a red shift in 

interference spectra. Because, nanoporous films bear much higher surface area in order to 

capture more receptor molecules on the thin film surface than planar thin films, the refractive 

index changes are basically higher resulting in a larger red shift in the interference spectra. This 

matter showed nanoporous thin films based RIfS are much more sensitive compared to planar 

thin films. Real-time monitoring of nanoporous RIfS detection tool is also advantageous for 

understanding the entire mechanism of analyte-receptor binding reaction and can be 

continuously screened. This capability of real-time and in situ monitoring of RIfS sensing tool 

determine the understanding mechanism and kinetics of receptor-analyte binding event. For 

this reason, by applying Fast Fourier Transform (FFT) to the reflection interference spectrum, 

effective optical thickness (OTeff) can be obtained by calculation of “2neffL” in Eq. (1.6). 

Fourier spectrum converts interference spectrum to simpler peaks representing OTeff changes 

in real-time, which is easy to follow surface changes especially in the case of bio-recognition 

tests 151.  

1.5.2. RIfS for Sensing and Biosensing  

Reflectometric Interference Spectroscopy (RIfS) as a label-free and highly sensitive tool 

was initially used for optical detection by G. Gauglitz et al. where a white light was guided 

onto the sensing film in perpendicular incidence generating interference fringe pattern 152. 

Determinations of a large variety of biological and chemical molecules with RIfS have been 

reported by Gauglitz’s group. They utilized an array of different thin planar films including 
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metal oxides, metals, glass substrates coated with silicon oxide, and so on 147-149, 153, 154. A series 

of receptors and capturing molecules including proteins, antibodies, oligonucleotides, 

aptamers, and nanoparticles were applied for studying biomolecular sensing using planar films. 

Those studies depicted that the recognition procedure (i.e. receptor-analyte binding) results in 

the increase in refractive index medium leading to shifts in the interference spectra and 

subsequent changes of effective optical thickness (OTeff) of the thin films. The OTeff (as sensing 

parameter) can be calculated between a variation of wavelength inverse (1/λ) and its fringe 

order (m) 107, 108. Polymer planar thin films have been utilized for RIfS based sensing systems 

for label-free detection of various target molecules (Figure 1.11) including organic polutants, 

DNA, glycopeptides, peptide nucleic acid and hydrochlorocarbons 155-159.  

The development of RIfS based sensing systems with planar thin films (e. g. glass 

substrates coated with polymer film) was conducted to diode-array spectrometer as the 

detector. This strategy introduced simplified and low cost RIfS optical sensor system because 

of lack requirement of fibre optic light guides. Light emitting diodes (LEDs) could produce 

interference pattern by only four wavelengths which led to a high light-emitting intensity. The 

LEDs were focused onto a planar sensing platform without using an optical fibre and then 

reflected light was collected by a photodiode (converts light to an electrical current), at the 

normal angle. This innovative fibre-free of RIfS sensor declined spectral information without 

loss of the RIfS performance. OTeff changes were also monitored in the case of volatile organic 

compounds 160. An advanced and complicated RIfS based sensor was developed for parallel 

screening of multiple biomolecules using microplate platform (i.e. with different surface 

chemistry) and multiplexer optical processor with multiple interference filters which resulted 

the reflection of light produced different wavelengths and subsequently different interference 

pattern. This light multiplexer complex made the possibility to monitor analyte interaction 

events on single sensing substrate via calculation of optical thicknesses 161.  Other RIfS systems 
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were also configured using polymer thin film coated glass substrate which was operating in 

total internal reflectance (TIR) mode used for detection of antibodies and proteins 162, 159.  

 

Figure 1.11. (a) Schematic illustration of RIfS detection using planar thin-film substrate (e. g. 

glass substrate with polymer coated), (b) interference pattern and reflected beams output, and 

(c) effective optical thickness (EOT) obtained from the interference spectrum by applying FFT. 

EOT changes during hybridization event onto surface (Source [163]). 

1.5.3. Nanoporous Structural Based RIfS Sensors  

Although, all these investigations revealed a high-throughput of sensing strategy, the low 

surface area of planar sensing substrates limited the practical performance of such systems. To 

tackle this matter, nanoporous thin films (e. g. nanoporous anodic alumina, porous silicon, 

nanoporous zinc oxide, cerium oxide and titania nanotubes) were introduced as potential 

alternatives 70, 164-169. At the early stage of research on the combination of RIfS and porous 

material, organic solvents were detected inside pores of porous silicon (i.e. thin film) 170. That 

report initially showed the importance of porous silicon to receive large changes in refractive 

index.  

It is demonstrated anodic electrochemical etching of porous silicon creates changes in its 

porosity (e. g. refractive index) along the pores thickness. This ability allows fabricating a 

complex pore structure in porous silicon to generate photonic crystals such as multilayered 

pore structure, rugate filters, Bragg reflectors and microcavities 171-174. It is discovered that 

photonic structures like microcavities display a uniform reflection peak along interference 
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fringes. However, interference fringes from rugate filters display a large stop-band in middle 

of the optical spectrum. These differences in the optical spectra of such structures made the 

advantage for the development of a variety of optical sensors for many applications as 

mentioned before. Porous silicon rugate filters demonstrated both the optical signatures (i.e. 

interference fringes and reflection peaks) have been used for sensing substrate, which presents 

high reflectivity spectrum with sinusoidal varying refractive index 175. The other type of porous 

silicon structure for optical sensing purposes have been introducing as layered or stacked 

porous silicon which has been fabricated studied for multiple sensing applications. For 

instance, two-layered porous silicon structure with large pores on top layer and smaller pores 

at the bottom was prepared by sequentially reducing current density during electrochemical 

etching 151, 176, 177. Due to the different porosity of each layer, a complex interference pattern 

was observed in the reflection spectrum. This showed that each layer could act as an 

interferometer individually (Figure 1.12). The complex reflection spectrum presented multiple 

signals corresponding to the effective optical thickness of each layer in the Fourier transform 

spectra. Such two layered structures could be beneficial for selective detection of a mixture of 

molecules (e.g. bovine serum albumin and sucrose). This happened because of size-exclusion 

feature that does allow small molecules easily fit both layers whereas large molecules can only 

place into large pores on the top layer, which is an appropriate strategy for selective detection 

of various large and small target molecules, simultaneously. Additionally, this structure was 

advantageous for the process of enzyme degradation monitoring when enzyme immobilization 

occurred in the top layer and collection of degraded molecules in the bottom layer 178.  
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Figure 1.12. Optical sensors based on porous silicon with different porosity. a) Interference 

pattern generated from single-layered porous silicon. b) Interference pattern generated from a 

double-layer rugate structure porous silicon (source [179]). c) Double-layer biosensor based on 

porous silicon, and d) its corresponding interference pattern and fast Fourier transform 

spectrum in which layers are assigned as depicted (source [176]). Images are adapted with 

permission.  

A few more studies investigated composites substances of porous silicon with titania or 

carbon in order to improve the stability of porous silicon against oxidisation which results in 

surface degradation of porous silicon 180, 181.  

The use of porous silicon (PSi) have been mainly considered as a suitable candidate due 

to large surface area and high level of sensitivity to develop RIfS sensors for chemical and bio 

analytes detections including steroid (e. g. dexamethasone), antibodies, sugars (e. g. sucrose, 

glucose), proteins (e. g. streptavidin, bovine serum albumin), enzymes (e. g. protease, 

gelatinase), DNA and so on 171, 172, 176, 182-189. The large surface of porous silicon substrate 

enabled a large amount of molecular interactions over a small surface area which caused a low 
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limit of detection of 9 fg/mL for DNA molecules during hybridisation test 172. Besides 

quantitative and qualitative detection of these target molecules, it could also be possible to 

reduce detection time by integration of porous silicon chip into the direct flow cell (Figure 

1.13a) 190.  

Although PSi combined the unique advantages of simplicity and extraordinary capabilities 

to be integrated into high-throughput for optical label-free biosensors, this nanoporous material 

is not particularly stable under biological environment because it is sensitive to nucleophilic 

attack which results formation of bonds between undesired molecules. The nucleophilic attack 

leads to a collapse of nanopore structure 189. The other problem of using porous silicon structure 

towards biological area is the formation of covalent bonds between silicon and carbon from 

organic monolayer, which the structure demonstrated corrosion and dissolution at pH > 8190. 

The instability of pore structure causes in a decrease in the refractive index over time and 

instability in the interference signal. Therefore, other material (e. g. NAA) application opened 

up innovative ideas for effective fabrication of interferometric biosensors 138.  
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Figure 13. a) Schematic illustration of RIfS from nanoporous substrate, b) interference pattern 

generated, and c) effective optical thickness (EOT) obtained by FFT application on the 

interference pattern (source [169]).  

1.5.4. NAA Integrated with RIfS Sensors  

In the case of NAA, several advantages rather than other nanoporous material such as 

porous silicon and titania nanotubes are discussed. NAA present excellent physical and 

chemical properties. For example, NAA has demonstrated the capability due to its controllable 
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nanoporous structure in comparison to porous silicon. NAA pore geometry can be structurally 

engineered using different anodization approaches. NAA surface chemistry can be varied using 

a variety of biomolecules without any loss in the nanopore structure. NAA is also more 

optically active compared with titania nanotubes 11, 13, 28, 67, 107.  NAA such as porous silicon 

create Fabry-Pérot modes in an interferometer generating interference fringe pattern in RIfS 

system 138. Therefore, optical sensing of biomolecules target analytes can be obtained through 

real-time measurement of effective optical thickness (Figure 1.14). It is reported that 

combination of NAA with RIfS system offers a highly sensitive and selective detection system 

for a wide range of biomolecules (e. g. DNA and antibody-antigen), organic molecules and 

metal ions 137, 138, 191-194.  

 

 
Figure 1.14. A label-free nanoporous anodic alumina biosensor. a) Nanoporous alumina 

structure used as thin film platform. b) Real-time biomolecular binding monitoring based on 

optical thickness changes (source [138]).  

Many studies were performed to optimise the interference signal for enhancement of 

highly sensitive RIfS system. This optimisation of interference signal was carried out by 

controlling the shift in effective optical thickness signal where different pore geometry of NAA 

was applied.  It was observed that application of different pore widening time revealed the shift 
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in effective optical thickness in the case of interferometric immunoassay system. It proved that 

NAA with larger pore diameter could present better sensing performance in RIfS 193. The 

influence of pore diameter over the effective optical thickness was further analysed with three 

different pore diameter as a function of the interaction between human IgG and anti-human 

IgG. This study was also in good agreement with the expected higher sensitivity upon larger 

pore diameter in reflectance interference spectroscopy 194. Another comprehensive study was 

about the effect of pore diameter, pore length and surface coatings (e. g. metal deposition) as 

suitable parameters to tune optical characteristics of NAA structure 195. The authors 

demonstrated pore geometry parameters criteria such as pore diameter/pore length are more 

effective in their collective rather than their individual contribution. Metal coatings (e. g. gold 

and platinum) was used on top the surface of NAA for detection of gas sensing (e. g. hydrogen 

sulphide and hydrogen) 196. The coatings were found as an excellent beneficial method for 

sensitivity and selectivity where gold layer was sensitive for hydrogen sulphide and platinum 

showed sensitivity for hydrogen. Additionally, platinum- coated NAA enabled significant 

sensitivity of interferometric fringe pattern with high signal-to-noise ratio, as a function of 

immunoglobulin antibodies detection 197. This immune biosensor demonstrated more 

sensitivity of NAA than porous silicon. Furthermore, a bi-layered NAA structure was also 

employed for bovine serum albumin detection based on size-exclusion purposes 198. This 

engineered NAA structure was gold-coated on the top surface in order to enhance RIfS signal.  

This structure generated a complex reflective spectrum presenting multiple reflection peaks 

corresponding to respective optical layers. Another study showed that NAA can act as 

biomedical implant compatible platform for drug release (e. g. indomethacin) in situ 199.  The 

drug release mechanism was controlled under dynamic flow condition by measuring the optical 

thickness changes in RIfS system. This ultrasensitive optical sensor also demonstrated the 

excellent capability of RIfS towards environmental target analytes. The performance of the 
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RIfS system enhanced because of structurally engineered of NAA rugate filter leading to 

improvement in the effective optical medium of nanopores 200.   

1.6.  From Sensing to Applications: Integration of Molecular 

Biology with Biosensor Devices 

Typical molecular biology techniques (e. g. nucleic acid amplification assays for 

genotyping) require the samples to be sent to a laboratory for detection and analysis. These 

analytical methods allow for high accuracy and sensitivity and low detection limits. Despite 

these advantages, they are expensive, time consuming and require the use of highly trained 

personnel.  These challenges are very important and need to be overcome for rapid requirement 

applications such as medical diagnosis 201, 202. Emerging robust, low-cost, and easy-to-use 

sensing technologies lead to ability to perform analysis more efficiently. Moreover, enhanced 

sensors offer the potential integration of the molecular biology techniques within a specific 

transducing system capable of analysing samples on-site 203. For this purpose, nucleic acid-

based strategy is frequently reported technique integrated in a biosensor 204. Particularly, 

isothermal nucleic acid amplification has been widely employed for variety of bio-analyte 

detection with bacterial and viral origins 205-208. To detect these kind of bio-analytes, the 

applicability of different amplification approaches have been explored including reverse 

transcription polymerase chain reaction (RT-PCR), loop-mediated isothermal amplification 

(LAMP), helicase-dependant amplification (HAD), strand displacement amplification (SDA), 

and rolling circle amplification (RCA) 209. Recently, RCA demonstrated practical advantages 

compared to other amplification methods where a foodborne pathogen (e.g. Salmonella) was 

rapidly detected during a single-step amplification at two different temperatures 210. This 

robustness and high sensitivity of RCA strategy can be applied in widespread applications like, 
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proteomics, diagnostics, nanotechnology, drug discovery, and biosensing 211. RCA integration 

with a biosensor device is highly considered as signal-amplification tool due to high speed 

synthesis long (more than 1000 bases), tandemly-repetitive, linear strand DNA chain by a short 

circular template (less than 100 bases). RCA reaction can provide amplification products up to 

104-fold copies of template 212. Moreover, RCA-based biosensor is known as highly versatile 

detection tool because of its capability of label-free detection and real-time monitoring 213. 

Specifically, a sensitive label-free pesticide detection is well-established using electrochemical 

sensor integrated with RCA 214. The strategy depicted highly sensitivity with a detection limit 

as low as 2.1 μg/L. Finally, the outcomes of RCA-based biosensors proved that the technology 

is not only beneficial for high performance detection, but also it could overcome the labour-

intensive and expensive features of similar devices (i.e. microarrays) 215. 

1.7. Research Gaps for NAA Based Optical Interferometry 

Biosensing 

Nanoporous anodic alumina, porous silicon, and titania nanotube arrays are an attractive 

platform for optical sensing purposes. Amid these nanoporous materials, NAA offers several 

advantages such as thermal stability, chemical resistance, large specific surface area, versatile 

nanostructure modification, and more importantly high level of biocompatibility. Additionally, 

the ability to tune its optical characteristics makes NAA an even more interesting substrate for 

optical biosensing. Previously, NAA based sensors have been reported using a variety of 

optical detection techniques such as SPR and SERS. However, the combination of NAA with 

those techniques is limited by the cost, bulkiness, inability to carry out real-time sensing, and 

the requirement for precise structural control and metal coatings. RIfS bridges these gap in 

combination with NAA and can be used to set up a highly selective and sensitive, label-free, 

portable and biocompatible sensing system. Therefore, developing NAA based biosensors 
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using RIFS is a promising concept. Previous studies that have shown NAA based 

interferometric biosensing have had limitations in regards to sensitivity, selectivity and multi 

analyte sensing. To address some of these limitations more work is required and several key 

parameters should be considered:  

1. Structural geometry of NAA in order to provide more flexibility for sensing 

2. Surface chemistry modification of NAA for selective detection of biomolecules 

3. Integration of NAA with RIfS and improving its interferometric performances towards 

specific biomolecules and multi analyte detection 

4. Specific applications such as nucleic acid amplification assay for single nucleotide 

polymorphism (SNP) detection.  

1.8. Objectives 

The purpose of this thesis is to develop highly sensitive biosensing platforms based on 

NAA-RIfS which is focused on following aims.  

Aim 1. To explore NAA based interferometric biosensor for highly sensitive enzyme detection. 

The specific objectives are: 

 To develop reproducible fabrication protocols to fabricate NAA with the effective 

structural pore geometry to generate intensive interference signal from NAA. 

 To characterize the sensing performance of prepared NAA by estimating the changes 

in effective optical thickness and their sensing performances. 

 To investigate chemical selectivity of the biosensor towards model biomolecules. 

 Aim 2. To explore and optimise NAA based interferometric biosensor for binding affinity 

assessment between drug and human serum albumin. The specific objectives are: 
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 To fabricate NAA rugate filters for optimisation of interference signal from NAA. 

 To characterize the sensing performance by estimating the changes in effective optical 

thickness and wavelength. 

 To analyse fabrication parameters and their incorporation in sensitivity. 

Aim 3. To explore and optimise NAA based interferometric biosensor for multi-point 

sensitivity assessment. The specific development areas are:   

 To fabricate bilayered NAAs and explore their nano-structural features. 

 To characterize the sensing performance by estimating the changes in effective optical 

thickness at each layer. 

 To evaluate bilayered NAA structures for high performance multi-point sensing.  

Aim 4. To explore solution-based ligation-Rolling circle amplification technique for detection 

of single nucleotide polymorphism site from a pesticide resistant gene. Specific objectives are: 

 To confirm the genetic mutation associated with the resistant Tribolium castaneum 

strain by sequencing the relevant gene region. 

 To design and test probe and primers for a Ligation-Rolling Circle Amplification assay 

capable of testing for the pesticide resistance-associated molecular marker in the stored 

grain pest Tribolium castaneum.  

1.9. Thesis Structure 

This thesis includes 7 chapters. This section summarises all the chapters in this thesis and 

explains how each chapter addresses the aforementioned objectives to develop a highly 

sensitive NAA based biosensing device.  



40 | P a g e  
 

Chapter 1 intends to provide a brief overview of biosensors and their applications. The 

literature review is provided on optical biosensor concepts, nanoporous anodic alumina, its 

structural fabrication and engineering, and its surface chemistry modification. Details of 

reflectometric interference spectroscopy as the transduction system is provided. In the last 

section of this chapter, the idea based on molecular biotechnology integration into sensors is 

pinpointed.  

Chapter 2 gives out more details of materials and methods including the electrochemical 

anodization process for fabrication of NAA, its surface chemistry modification, and sensing 

process. This chapter also includes the molecular biology methods used in this project. 

Chapter 3 demonstrates the application of NAA platform for enzyme sensing in trace level 

detection using RIfS detection method. The study is published as Journal paper in Analytical 

Chemistry. 

Chapter 4 presents development of a method for improving the sensing performance of NAA 

using pulse anodization. This approach was demonstrated by preparing structures in NAA, 

known as NAA rugate filters (NAA-RFs) with higher sensitivity. Different types of NAA-RFs 

are prepared and optimized based on their sensing performance assessed by affinity binding 

assessment of a variety of biomolecules during this project. The study is published as Journal 

paper in Analytical Chemistry. 

Chapter 5 presents the performance of the engineered NAA platforms with double layer 

(funnel) geometry of NAA with different pore diameters to evaluate their applicability for multi 

analyte sensing. The Study is submitted as Journal paper in Sensors. 
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Chapter 6 presents the preliminary development of a genotyping assay that would be 

potentially adaptable to a NAA-RIfS biosensing platform in the future. The development of an 

L-RCA assay (solution-based assay) for specific SNP detection is demonstrated.  

Chapter 7 summarizes the research results for this thesis and provides a perspective for future 

applications of NAA based optical biosensors with proposed future directions. 
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bands of nanoporous anodic alumina-based distributed Bragg reflectors by pore widening. ACS 

applied materials & interfaces 2013, 5, 13375-13381. 

93. Ferré-Borrull, J.; Rahman, M. M.; Pallarès, J.; Marsal, L. F., Tuning nanoporous anodic 

alumina distributed-Bragg reflectors with the number of anodization cycles and the anodization 

temperature. Nanoscale research letters 2014, 9, 1-6. 

94. Macias, G.; Ferré-Borrull, J.; Pallarès, J.; Marsal, L. F., 1-D nanoporous anodic alumina 

rugate filters by means of small current variations for real-time sensing applications. Nanoscale 

research letters 2014, 9, 1-6. 

95. Santos, A.; Yoo, J. H.; Rohatgi, C. V.; Kumeria, T.; Wang, Y.; Losic, D., Realization 

and advanced engineering of true optical rugate filters based on nanoporous anodic alumina by 

sinusoidal pulse anodization. Nanoscale 2016. (8), 1360-1373. 

96. Santos, A.; Vojkuvka, L.; Alba, M.; Balderrama, V. S.; Ferré‐Borrull, J.; Pallares, J.; 

Marsal, L. F., Understanding and morphology control of pore modulations in nanoporous 

anodic alumina by discontinuous anodization. physica status solidi (a) 2012, 209, 2045-2048. 

97. Li, J.; Li, C.; Chen, C.; Hao, Q.; Wang, Z.; Zhu, J.; Gao, X., Facile method for 

modulating the profiles and periods of self-ordered three-dimensional alumina taper-

nanopores. ACS applied materials & interfaces 2012, 4, 5678-5683. 

98. Santos, A.; Kumeria, T.; Wang, Y.; Losic, D., In situ monitored engineering of inverted 

nanoporous anodic alumina funnels: On the precise generation of 3d optical nanostructures. 

Nanoscale 2014, 6, 9991-9999. 

99. Santos, A.; Ferré-Borrull, J.; Pallarès, J.; Marsal, L. F., Heirarchical nanoporous anodic 

alumina templates by asymetric two-step anodization.  Physica Status Solidi 2011, 3, 668-674.  

100. Yamamoto, Y.; Baba, N.; Tajima, S., Coloured materials and photoluminescence 

centres in anodic film on aluminium. Nature 1981, 289, 572-574. 



51 | P a g e  
 

101. Velleman, L.; Triani, G.; E vans, P. J.; Shapter, J. G.; Losic, D., Structural and chemical 

modification of porous alumina membranes. Microporous and Mesoporous Materials 2009, 

126, 87-94. 

102. Losic, D.; Simovic, S., Self-ordered nanopore and nanotube platforms for drug delivery 

applications. Export Opinion Drug Delivery 2009, 6, 1363-1381.  

103. Choy, K. L., Chemical Vapor deposition of coatings. Progress in Materials Science 

2003, 48, 57-170. 

104. Park, S.; Kim, Y-S.; Kim, W. B.; Jon, S., Carbon nanosyringe array as a platform for 

intracellular delivery. Nano Letters 2009, 9, 1325-1329. 

105. Aramesh, M.; Fox, K.; Lau, D. W. M.; Fang, J.; Ostrikov, K.; Prawer, S.; Cervenka, J., 

Multifunctional three-dimentional nanodiamond-nanoporous alumina nanoarchitectures. 

Carbon 2014, 75, 452-464. 

106. Tsud, N.; Yoshitake, M., Vacum vapor deposition of phenylphosphonic acid on 

amorphous alumina. Surface Science 2007, 601, 3060-3066. 

107. Jani, A. M. M.; Kempson, I. M.; Losic, D.; Voelcker, N. H., Dressing in layers: layering 

surface functionalities in nanoporous aluminum oxide membranes. Angewandte Chemie 2010, 

122, 8105-8109. 

108. Szczepanski, V.; Vlassiouk, I.; Smirnov, S., Stability of silane modifiers on alumina 

nanoporous membranes. Journal of membrane science 2006, 281, 587-591. 

109. Vissiouk, I.; Krasnoslobodtsev, A.; Smirnov, S.; Germann, M., “Direct” detection and 

separation of DNA using nanoporous alumina filters. Langmuir 2004, 20, 9913-9915. 

110. Vissiouk, I.; Takmakov, P.; Smirnov, S., Sensing DNA hybridization via ionic 

conductance through a nanoporous electrode. Langmuir 2005, 21, 4776-4778. 



52 | P a g e  
 

111. Odom, D. J.; Baker, L. A.; Martin, C. R., Solvent-extraction and langmuir-adsorption-

based transport in chemically functionalized nanopore membranes. The Journal of Physical 

Chemistry B 2005, 109, 20887-20894. 

112. Lee, S. W.; Shang, H.; Haasch, R. T.; Petrova, V.; Lee, G. U., Transport and functional 

behaviour of poly (ethylene glycol)-modified nanoporous alumina membranes. 

Nanotechnology 2005, 16, 1335. 

113. Chen, Y.; Santos, A.; Wang, Y.; Kumeria, T.; Wang, Wang, C.; Li, J.; Losic, D., 

Interferometric nanoporous anodic alumina photonic coatings for optical sensing. Nanoscale 

2015, 7, 7770-7779. 

114. La Flamme, K. E.; Popat, K. C.; Leoni, L.; Markiewicz, E.; La Tempa, T. J.; Roman, 

B. B.; Grimes, C. A.; Desai, T. A., Biocompatibility of nanoporous alumina membranes for 

immunoisolation. Biomaterials 2007, 28, 2638-2645. 

115. Takmakov, P.; Vlassiouk, I.; Smirnov, S., Application of anodized aluminum in 

fluorescence detection of biological species. Analytical and bioanalytical chemistry 2006, 385, 

954-958. 

116. Vlassiouk, I.; Takmakov, P.; Smirnov, S., Sensing DNA hybridization via ionic 

conductance through a nanoporous electrode. Langmuir 2005, 21, 4776-4778. 

117. Sehayek, T.; Lahav, M.; Popovitz-Biro, R.; Vaskevich, A.; Rubinstein, I., Template 

synthesis of nanotubes by room-temperature coalescence of metal nanoparticles. Chemistry of 

materials 2005, 17, 3743-3748. 

118. Lei, Y.; Cai, W.; Wilde, G., Highly ordered nanostructures with tunable size, shape and 

properties: A new way to surface nano-patterning using ultra-thin alumina masks. Progress in 

Materials Science 2007, 52, 465-539.  



53 | P a g e  
 

119. Qiu, T.; Zhang, W.; Lang, X.; Zhou, Y.; Cui, T.; Chu, PK., Controlled assembly of 

highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina 

membranes. Small 2009, 5(20), 2333-2337.  

120. Zhang, L.; Fang, Y.; Zhang, P., Laser-MBE of nickel nanowires using AAO template: 

A new active substrate of surface enhanced Raman scattering. Spectrochimica Acta Part A 

2008, (69) 91–95. 

121. Lupi, C.; Felli, F.; Ippoliti, L.; Caponero, M. A.; Ciotti, M.; Nardelli, V.; Paolozzi, A., 

Metal coating for enhancing the sensitivity of fiber Bragg grating sensors at cryogenic 

temprature. Smart Materials and Structures 2005, 14, N71-N76. 

122. Dai, J.; Yang, M.; Yu, X.; Lu, H., Optical hydrogen sensor based on etched fiber Bragg 

sputerred with Pd/Ag composite film. Optical Fiber Technology 2013, 19, 26-30. 

123. Ando, M.; Chabicovsky, R.; Haruta, M., Optical hydrogen sensitivity of nobel metal-

tungsten oxide composite films prepared by sputtering deposition. Sensors and Actuators B 

2001, 76, 13-17. 

124. Hernández-Eguía, L. P.; Ferré-Borrull, J.; Macias, G.; Pallarès, J.; Marsal, L. F., 

Engineering optical properties of gold-coated nanoporous anodic alumina for biosensing. 

Nanoscale Research Letters 2014, 9, 414. 

125. Alvarez, S. D.; Derfus, A. M.; Schwartz, M. P.; Bhatia, S. N.; Sailor, M. J., The 

compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro 

biosensors. Biomaterials 2009. (30), 26-34. 

126. Kumeria, T.; Santos, A., Sensing and biosensing applications of nanoporous anodic 

alumina. In Electrochemically engineered nanoporous materials - Methods, properties and 

applications, Losic, D.; Santos, A., Eds. Springer International Publishing AG - Germany: 

Australia, 2015; Chapter 3. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Zhang%20W%5BAuthor%5D&cauthor=true&cauthor_uid=19548279
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lang%20X%5BAuthor%5D&cauthor=true&cauthor_uid=19548279
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chu%20PK%5BAuthor%5D&cauthor=true&cauthor_uid=19548279


54 | P a g e  
 

127. Santos, A.; Macías, G.; Ferré-Borrull, J.; Pallarès, J.; Marsal, L. F., Photoluminescent 

enzymatic sensor based on nanopourous anodic alumina. ACS Applied Materials and Interfaces 

2012, 4, 3584-3588. 

128. Jia, R. P.; Shen, Y.; Luo, H. Q.; Chen, X. G.; Hu, Z. D.; Xue, D. S., Enhanced 

photoluminescence properties of morin and trypsin absorbed on porous alumina films with 

ordered pores array. Solid State Communications 2004, 130, 367-372.  

129. Skosura-Muñiz, A. de la, Mekoçi, Nanoparticle based enhancement of electrochemical 

DNA hybridization signal using nanoporous electrodes. The Royal Society of Chemistry 2010, 

46, 9007-9009. 

130. Hiep, H. M.; Yoshikawa, H.; Tamyia, E., Interference localized surface plasmon 

resonance nanosensor tailored for the detection of specific biomolecular interactions. 

Analytical Chemistry 2010, 82, 1221-1227. 

131. Kim, D-K.; Kerman, K.; Saito, M.; Sathuluri, R. R.; Endo, T.; Yamamura, S.; Kwon, 

Y-S., Tamiya, E., Label-free DNA biosensor based on localized surface plasmon resonance 

coupled with interferometry. Analytical Chemistry 2007, 79, 1855-1864. 

132. Fan, Y.; Hotta, K.; Yamaguchi, A.; Teramae, N., Enhanced frlorescence in a 

nanoporous waveguide and its quantitative analysis. Optics Express 2012, 20, 12850-12859. 

133. Dhathathreyan, A., Real-time monitoring of invertase activity immobilized in 

nanoporous aluminium oxide. The Journal of Physical Chemistry B 2011, 115, 6678-6682. 

134. Nayak, D. R.; Bhat, N.; Umapathy, S., Surface enhanced Raman scattering on anodized 

alumina templates for bio-sensing applications. Physics of Semiconductor Devices 2013, 577-

579. 

135. El-Said, W. A.; Kim, T-H.; Kim, H.; Choi, J-W., Analysis of intracellular state based 

on controlled 3D nanostructures mediated surface enhanced raman scattering. Plos One 2011, 

6 (2), e15836. 



55 | P a g e  
 

136. Zhang, C.; Smirnov, A. I.; Bahn, D.; Grebel, H., Surface enhanced raman scattering of 

biospecies on anodized aluminium oxide films. Chemical Physics Letters 2007, 440, 239-243. 

137. Pan, S.; Rothberg, L. J., Interferometric sensing of biomolecular binding using 

nanoporous aluminum oxide templates. Nano letters 2003, 3, 811-814. 

138. Alvarez, S. D.; Li, C.-P.; Chiang, C. E.; Schuller, I. K.; Sailor, M. J., A label-free porous 

alumina interferometric immunosensor. Acs Nano 2009, 3, 3301-3307. 

139. Hotta, K.; Yamaguchi, A.; Teramae, N. Nanoporous waveguide sensor with optimized 

nanoarchitectures for highly sensitive label-free biosensing. ACS Nano 2012, 6(2), 1541-1547. 

140. Santos, A.; Macías, G.; Ferré-Borrull, J., Pallarès, J.; Marsal L. F., Photoluminescent 

enzymatic sensor based on nanoporous anodic alumina. ACS Applied Materials and Interfaces 

2012, 4, 3584-3588. 

141. Ji, N.; Ruan, W.; Wang, C.; Lu, Z.; Zhao, B., Fabrication of silver decorated anodic 

aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and 

thin film interference. Langmuir 2009, 25(19), 11869-11873. 

142. Kumeria, T.; Santos, A.; Losic, D., Ultrasensitive nanoporous interferometric sensor 

for label-free detection of Gold (III) ions. ACS Applied Materials and Interfaces 2013, 5(22), 

11783-11790.   

143. Schmitt, H.-M.; Brecht, A.; Piehler, J.; Gauglitz, G., An integrated system for optical 

biomolecular interaction analysis. Biosensors and Bioelectronics 1997. 12, 809-816. 

144. Gauglitz, G.; Brecht, A.; Kraus, G.; Mahm, W., Chemical and biochemical sensors 

based on interferometry at thin layers. Sensors and Actuators B: Chemical 1993, 11, 21-27. 

145. Snow, M. R.; Pring, A.; Self, P.; Losic, D.; Shapter, J., The origin of the color of pearls 

in iridescence from nano-composite structures of the nacre. American Mineralogist 2004. 89, 

1353-1358. 



56 | P a g e  
 

146. Vukusic, P.; Sambles, J.; Lawrence, C.; Wootton, R., Quantified interference and 

diffraction in single Morpho butterfly scales. Proceedings of the Royal Society of London. 

Series B: Biological Sciences 1999. 266, 1403-1411. 

147. Brecht, A.; Gauglitz, G., Optical probes and transducers. Biosensors and Bioelectronics 

1995, 10 (9), 923-936. 

148. Gauglitz, G., Direct optical sensors: principles and selected applications. Analytical and 

bioanalytical chemistry 2005, 381, 141-155. 

149. Gauglitz, G., Direct optical detection in bioanalysis: an update. Analytical and 

bioanalytical chemistry 2010, 398, 2363-2372. 

150. Kumeria, T.; Parkinson, L.; Losic, D., A nanoporous interferometric micro-sensor for 

biomedical detection of volatile sulphur compounds. Nanoscale research letters 2011, 6, 1-7. 

151. Pacholski, C.; Sartor, M.; Sailor, M. J.; Cunin, F.; Miskelly, G. M., Biosensing using 

porous silicon double-layer interferometers: reflective interferometric fourier transform 

spectroscopy. Journal of the American Chemical Society 2005, 127, 11636-11645.  

152. Brecht, A.; Ingenhoff, J.; Gauglitz, G., Direct monitoring of antigen-antibody 

interactions by spectral interferometry. Sensors and Actuators B 1992. 6, 96-100. 

153. Brecht, A.; Gauglitz, G., Interferometric immunoassay in a FIA-system: a sensitive and 

rapid approach in label-free immunosensing. Bisensors and Bioelectronics 1993. 8, 387-392. 

154. Brecht, A.; Lang, G.; Gauglitz, G., Wavelength dependencies in interferometric 

measurements of thin protein films. Fresenius’ Journal of Analytical Chemistry 1993, 346, 

615-617.  

155. Dieterle, F.; Belge, G.; Betsch, C.; Gauglitz, G., Quantification of the refrigerants R22 

and R134a in mixtures by means of different polymers and reflectometric interference 

spectroscopy. Analytical and bioanalytical chemistry 2002, 374, 858-867. 



57 | P a g e  
 

156. Tünnemann, R.; Mehlmann, M.; Süssmuth, R. D.; Bühler, B.; Pelzer, S.; Wohlleben, 

W.; Fiedler, H.-P.; Wiesmüller, K.-H.; Gauglitz, G.; Jung, G., Optical biosensors. Monitoring 

studies of glycopeptide antibiotic fermentation using white light interference. Analytical 

chemistry 2001, 73, 4313-4318. 

157. Yan, H.; Kraus, G.; Gauglitz, G., Detection of mixtures of organic pollutants in water 

by polymer film receptors in fibre-optical sensors based on reflectometric interference 

spectrometry. Analytica chimica acta 1995, 312, 1-8. 

158. Sauer, M.; Brecht, A.; Charisse, K.; Maier, M.; Gerster, M.; Stemmler, I.; Gauglitz, G.; 

Bayer, E., Interaction of chemically modified antisense oligonucleotides with sense DNA: a 

label-free interaction study with reflectometric interference spectroscopy. Analytical chemistry 

1999, 71, 2850-2857. 

159. Kröger, K.; Jung, A.; Reder, S.; Gauglitz, G., Versatile biosensor surface based on 

peptide nucleic acid with label free and total internal reflection fluorescence detection for 

quantification of endocrine disruptors. Analytica Chimica Acta 2002, 469, 37-48. 

160. Reichl, D.; Krage, R.; Krumme, C.; Gauglitz, G., Sensing of volatile organic 

compounds using a simplified reflectometric interference spectroscopy setup. Applied 

Spectroscopy 2000, 54, 583-586. 

161. Birkert, O.; Tünnemann, R.; Jung, G.; Gauglitz, G., Label-free parallel screening of 

combinatorial triazine libraries using reflectometric interference spectroscopy. Analytical 

chemistry 2002, 74, 834-840. 

162. Tschmelak, J.; Kumpf, M.; Käppel, N.; Proll, G.; Gauglitz, G., Total internal reflectance 

fluorescence (TIRF) biosensor for environmental monitoring of testosterone with 

commercially available immunochemistry: Antibody characterization, assay development and 

real sample measurements. Talanta 2006, 69, 343-350. 



58 | P a g e  
 

163. Pröll, F.; Möhrle, B.; Kumpf, M.; Gauglitz, G., Label-free characterisation of 

oligonucleotide hybridisation using reflectometric interference spectroscopy. Analytical and 

Bioanalytical Chemistry 2005, 382, 1889-1894.  

164. Yantasee, W.; Lin, Y.; Li, X.; Fryxell, G. E.; Zemanian, T. S.; Viswanathan, V. V., 

Nanoengineered electrochemical sensor based on mesoporous silica thin-film functionalized 

with thiol-terminated monolayer. Analyst 2003, 128, 899-904. 

165. Saha, S.; Arya, S. K.; Singh, S. P.; Sreenivas, K.; Malhotra, B. D.; Gupta, V., 

Nanoporous cerium oxide thin film for glucose biosensor. Biosensors and Bioelectronics 2008, 

24, 2040-2045. 

166. Singh, S. P.; Arya, S. K.; Pandey, P.; Malhotra, B. D., Cholestrol biosensor based on rf 

sputtered zinc oxide nanoporous thin film. Applied Physics Letters 2007, 91, 063901. 

167. Tai, W-P.; Oh, J-H., Fabrication and humidity sensing properties of nanostructured 

TiO2-SnO2 thin films. Sensors and Actuatores B 2002. 85, 154-157. 

168. Ghadiri, M. R., Motesharei, K., Lin, S. Y., Sailor, M. J., Dancil, K. P. S., Porous 

semiconductor-based optical interferometric sensor. U.S. Patent No. 6,248,539, 2001. 

169. Janshoff, A.; Dancil, K.-P. S.; Steinem, C.; Greiner, D. P.; Lin, V. S.-Y.; Gurtner, C.; 

Motesharei, K.; Sailor, M. J.; Ghadiri, M. R., Macroporous p-type silicon Fabry-Perot layers. 

Fabrication, characterization, and applications in biosensing. Journal of the American 

Chemical Society 1998, 120, 12108-12116. 

170. Bjorklund, R. B.; Zangooie, S.; Arwin, H., Color changes in thin porous silicon films 

caused by vapor exposure. Applied physics letters 1996, 69, 3001-3003. 

171. Ouyang, H.; Christophersen, M.; Viard, R.; Miller, B. L.; Fauchet, P. M., Macroporous 

silicon macrocavities for macromolecule detection. Advanced Functional Materials 2005. 15, 

1851-1859. 



59 | P a g e  
 

172. Lin, V. S.-Y.; Motesharei, K.; Dancil, K.-P. S.; Sailor, M. J.; Ghadiri, M. R., A porous 

silicon-based optical interferometric biosensor. Science 1997, 278, 840-843. 

173. Cunin, F.; Schmedake, T. A.; Link, J. R.; Li, Y. Y.; Koh, J.; Bhatia, S. N.; Sailor, M. 

J., Biomolecular screening with encoded porous-silicon photonic crystals. Nature Materials 

2002, 1, 39-41. 

174. Chan, S.; Fauchet, P. M.; Li, Y.; Rothberg, L. J.; Miller, B. L., Porous silicon 

microcavities for biosensing applications. Physica Status Solidi 2000, 182, 541-546.  

175. Ilyas, S.; Böcking, T.; Kilin, K.; Reece, P. J.; Gooding, J.; Guas, K.; Gal, M., Porous 

silicon based narrow line-width rugate filters. Optical Materials 2007, 29, 619-622. 

176. Pacholski, C.; Yu, C.; Miskelly, G. M.; Godin, D.; Sailor, M. J., Reflective 

interferometric fourier transform spectroscopy: a self-compensating label-free immunosensor 

using double-layers of porous SiO2. Journal of the American Chemical Society 2006, 128, 

4250-4252. 

177. Pacholski, C.; Perelman, L. A.; VanNieuwenhze, M. S.; Sailor, M. J., Small molecule 

detection by reflective interferometric Fourier transform spectroscopy (RIFTS). physica status 

solidi (a) 2009, 206, 1318-1321. 

178. Perelman, L. A.; Pacholski, C.; Li, Y. Y.; VanNieuwenhze, M. S.; Sailor, M. J., pH-

triggered release of vancomycin from protein-capped porous silicon films. Nanomedicine 2008 

3, 31-43. 

179. Pacholski, C., Photonic crystal sensors based on porous silicon. Sensors 2013, 13, 4694-

4713. 

180. Lin, H.; Gao, T.; Fantini, J.; Sailor, M. J., A porous silicon-palladium composite film 

for optical interferometric sensing of hydrogen. Langmuir 2004, 20, 5104-5108. 

181. Li, J.; Sailor, M. J., Synthesis and characterization of a stable, label-free optical 

biosensor from TiO 2-coated porous silicon. Biosensors and Bioelectronics 2014, 55, 372-378. 



60 | P a g e  
 

182. Anglin, E. J.; Schwartz, M. P.; Ng, V. P.; Perelman, L. A.; Sailor, M. J., Engineering 

the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of 

a steroid. Langmuir 2004, 20, 11264-11269. 

183. Anderson, M. A.; Tinsley-Bown A.; Allcock, P.; Perkins, E. A.; Snow, P.; Hollings, 

M.; Smith, R. G.; Reeves, C.; Squirrell, D. J.; Nicklin, S.; Cox, T. I., Sensitivity of the optical 

properties of porous silicon layers to the refractive index of liquid in the pores. Physica Status 

Solidi 2003, 197, 528-533. 

184. Recio-Sénchez, G.; Torres-Costa, V.; Manso, M.; Gallach, D.; López-García, J.; 

Martín-Palma, R. J., Towards the development of electrical biosensord based on nanostructured 

poros silicon. Materials 2010, 3, 755-763.   

185. Pacholski, C.; Sartor, M.; Sailor, M. J.; Cunin, F.; Miskelly, G., Biosensing using 

porous silicon double-layer interferometers reflective interferometric fourier transform 

spectroscopy. Journal of the American Chemical Society 2005, 127, 11636-11645.  

186. Kilian, K. A.; Böcking, T.; Gaus, K.; Gal, M.; Gooding, J. J., Peptide-modified optical 

filters for detecting protease activity. Acs Nano 2007, 1, 355-361. 

187. Orosco, M. M.; Pacholski, C.; Miskelly, G. M.; Sailor, M. J., Protein-coated porous-

silicon photonic crystals for amplified optical detection of protease activity. Advanced 

Materials 2006, 18, 1393-1396. 

188. Massad-Ivanir, N.; Shtenberg, G.; Zaidman, T.; Segal, E., Construction and 

characterisation of porous SiO2/hydrogel hybrids as optical biosensors for rapid detection of 

bacteria. Advance Functional Materials 2010, 20, 2269-2277.  

189. Sailor, M. J., Color me sensitive: amplification and discrimination in photonic silicon 

nanostructures. ACS Nano 2007, 1, 248-252. 

190. Mun, K.-S.; Alvarez, S. D.; Choi, W.-Y.; Sailor, M. J., A stable, label-free optical 

interferometric biosensor based on TiO2 nanotube arrays. Acs Nano 2010, 4, 2070-2076. 



61 | P a g e  
 

191. Kumeria, T.; Santos, A.; Losic, D., Ultera sensetive nanoporous interferometric sensor 

for label-free detection of gold(III) ions. ACS Applied Materials Interfaces 2013, 5, 11783-

11790. 

192. Kumeria, T.; Rahman, M. M.; Santos, A.; Ferré-Borrull, J.; Marsal, L. F.; Losic, D., 

Nanoporous anodic alumina rugate filters for sansing of ionic mercury: toward environmental 

point-of-analysis systems. ACS Applied Materials Interfaces 2014, 6, 12971-12978. 

193. An, H. C.; An, J. Y.; Kim, B.-W., Improvement of sensitivity in an interferometry by 

controlling pore size on the anodic aluminum oxide chip pore-widening technique. Korean 

Journal of Chemical Engineering 2009, 26, 160-164. 

194. Macias, G.; Ferré-Borrull, J.; Pallarès, J.; Marsal, L. F., Effect of pore diameter in 

nanoporous anodic alumina optical biosensors. Analyst 2015, 140, 4848-4854. 

195. Kumeria, T.; Losic, D., Controlling interferometric properties of nanoporous anodic 

aluminium oxide. Nanoscale research letters 2012, 7, 1-10. 

196. Kumeria, T.; Losic, D., Reflective interferometric gas sensing using nanoporous anodic 

aluminium oxide (AAO). physica status solidi (RRL)-Rapid Research Letters 2011, 5, 406-

408. 

197. Dronov, R.; Jane, A.; Shapter, J. G.; Hodges, A.; Voelcker, N. H., Nanoporous alumina-

based interferometric transducers ennobled. Nanoscale 2011, 3, 3109-3114. 
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CHAPTER 2. 

Method & Materials  

Chapter-2 provides the development of required fabrication process to fabricate variety of 

NAA platforms, perform their surface modification of NAA structures to specific capture of 

biomolecule, and use these platforms in RIfS system to evaluate their sensing performance 

assessment. Lastly, it is described the experiment procedure used to detect specific nucleic acid 

sequence using solution-based molecular technique that is proposed to be adopted for resistant 

gene detection using NAA-RIfS detection system. 
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2.1. Materials and chemicals 

High-purity (99.9997%) 1.5 × 1.5 cm2 square aluminum (Al) substrates 0.32 mm thick 

were supplied by Goodfellow Cambridge Ltd. (UK). Oxalic acid (H2C2O4), Sulfuric acid 

(H2SO4), phosphoric acid (H3PO4), perchloric acid (HClO4), chromic acid (H2CrO4), 

phosphoric acid (H3PO4), hydrochloric acid (HCl), (3-aminopropyl)trimethoxysilane 

(APTES), hydrogen peroxide (H2O2), glutaraldehyde (CH2(CH2CHO)2 − GTA), phosphate 

buffered saline (PBS), human serum albumin (HSA), chymotrypsin from bovine pancreas, 

peroxidase from horseradish, human hemoglobin, gelatin from porcine skin, and trypsin from 

porcine pancreas, indomethacin (C19H16ClNO4), coumarin (C9H6O2), sulfadymethoxine 

(C12H14N4O4S), warfarin (C19H16O4), salicylic acid (C7H6O3), ethanol (EtOH, C2H5OH), 

sodium hydroxide (NaOH), and quercetin were purchased from SigmaAldrich (Australia) and 

used as received, without further purification. Ultrapure water Option Q-Purelabs (Australia) 

was used for preparing the aqueous solutions used in this PhD project. Wizard® Genomic DNA 

Purification Kit was used from Promega. In the genetic study of this project, we used crop 

insects including T. castaneum QTC4 (phosphine susceptible strain) and T. castaneum 

QTC279 (phosphine resistant strain), which were kindly provided by department of agriculture 

and fisheries, Queensland.  

2.2. Electrochemical Anodization for Fabrication of Nanoporous 

Anodic Alumina 

2.2.1 The Anodization System  

Electrochemical procedure is frequently used for finishing and surface structuring of 

various metals via controlled anodic dissolution reactions. NAA material used in this project 

were fabricated using electrochemical anodization1, 2. Electrochemical anodization system 
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consists of anodization unit, a power supply, a digital-to-analogue converter, and computer 

software (Figure 2.1). 

 

Figure 2.1. A schematic diagram of the electrochemical anodization setup including an 

anodization unit (anodization cell and cooling system), a power supply, an analogue to digital 

converter card connecting the power supply to a computer.  

The electrochemical anodization unit for NAA fabrication consists of an anodization cell 

combined with cooling system in order to achieve the temperature of interest during 

anodization. Here, the anodization cell is designed as a custom built container which holds two 

parts including base and cover (Figure 2.2). The base is an open window holder with back 

copper plate (Figure 2.2a and 2.2b). Al chips (15 mm × 15 mm) can be fitted into the holder 

as the anode electrode. The cover holds platinum wires as the cathode electrodes, there is stirrer 

to keep consistent temperature of reaction, a thermometer, and electrical connections. The 

cover is wrapped with an insulation sheet as well (Figure 2.2c, 2.2d, and 2.2e). The base of 

the anodization cell is 6 cm × 4.5 cm I diameter which is enough space for the electrolyte and 

the electrochemical reaction.  
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Figure 2.2. Anodization cell configuration. a) Top view of anodization cell, and the base is 

used as an Anode (aluminium act as Anode). b) Back copper plate which is attached to the part 

of the anodization cell, used for electrical connection. c) Anodization cell, inner part of 

insulation cover holding platinum wires as cathode and stirrer. d) Top view of insulation cover 

holding electrical connections and thermometer. The grey color illustrates the insulation sheet. 

e) Cross-section view of anodization cell’ cover.  

In the following sections, the detail of the fabrication procedures for three different NAA 

structures used in this project are described. 

2.2.2 Fabrication of Nanoporous Anodic Alumina Photonic Film (NAA-PF) 

Aluminium (Al) chips were first cleaned in ethanol for 5 min and dried under air stream. 

Then, they were fitted into the designed anodization cell according Figure 2.2a. The 

electrochemical anodization was performed following a two-step anodization process3. 

According this process, Al chips were polished in a mixture of EtOH: HClO4 4:1 (v:v) at 20 V 

and 5 °C for 3 min in order to achieve smooth mirror surface. The first anodization step was 

performed in a solution of 0.3 M H2C2O4 at 40 V and 6 °C for 20 h (mild anodization). Then, 

the produced nanoporous layer was etched away in a mixture of 0.2 M H2CrO4 and 0.4 M 

H3PO4 for 3 h at 70 °C. Subsequently, the second anodization step was carried out under the 
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similar anodization conditions of first step for duration of 2 h. Pore diameter of resulting NAA-

PFs were widened by wet chemical etching in a solution of H3PO4 5 wt% at 35 °C for 15 min. 

 2.2.3 Fabrication of Nanoporous Anodic Alumina Rugate Filter (NAA-RF) 

Al substrates were cleaned under sonication in ethanol (EtOH) for 15 min and dried under 

air stream. Then, Al chips were fitted into the designed anodization cell. NAA rugate filters 

were fabricated using sinusoidal pulse anodization approach and galvanostatic mode in sulfuric 

acid electrolyte 4. Subsequently, Al substrates were electro polished using a mixture of HClO4 

and EtOH 1:4 (v:v) at 20 V and 5 °C for 3 min. After electro polishing, Al substrates were 

anodised in the above mentioned anodization cell using 1.1 M sulfuric acid as electrolyte. The 

temperature of anodization was constantly kept at −1 °C using the cooling system. The 

anodization process started with a first stage at constant current density of 1.12 mA cm−2 for 1 

h. After 1 hour, the anodization current density was set to be modified in a sinusoidal fashion 

between high (JMax = 1.12 mA cm−2) and low (JMin = JOffset = 0.28 mA cm−2) values. The 

sinusoidal modification was repeated for 150 cycles with certain anodization period (i.e., 650, 

700, 750 seconds). Finally, NAA rugate filters were pore widened by wet chemical etching in 

5 wt % H3PO4 at 35 °C for 6 min. Furthermore, the underlying aluminium was removed in a 

saturated solution of HCl/CuCl2. 

2.2.4 Fabrication of Bilayered Nanoporous Anodic Alumina (BL-NAA) 

Al chips were anodised following triple step anodization process. As mentioned before, Al 

chips were sonicated in ethanol to remove organic particles. Then, Al chips were 

electrochemically polished in a mixture of EtOH: HClO4 4:1 (v: v) at 20 V and 5°C for 3 min 

to get a smooth surface. 0.3M oxalic acid electrolyte, 20 V and 5 °C were defined as anodization 

conditions for all steps. First step of anodization was carried out during 20 hours. Then, the 

produced nanoporous layer was etched away in a mixture of 0.2 M H2CrO4 and 0.4 M H3PO4 
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for 3 h at 70 °C. The second and third steps of anodization were performed in a solution of 0.3 

M H2C2O4 at 40 V and 5 °C according to a particular timing of anodization (i.e., 3, 4.5, 6, and 

9 hr). A pore widening step was used to increase diameter of nanopores by a wet chemical 

etching method in an aqueous solution of H3PO4 5 wt% at 35 °C for 15 min. Furthermore, the 

underlying aluminium was removed in a saturated solution of HCl/CuCl2. 

2.3. Surface Chemistry Functionalization Using CVD  

Functionalization of NAA surface is significant step in the process of capture detection 

using a RIfS sensor. Here, prepared NAAs were mainly functionalized with APTES using a 

chemical vapour deposition (CVD) process.  

All types of NAA structures used in this project were chemically functionalised with 3-

aminopropyltriethoxysilane (APTES) following a well-established protocol 5, 6. First, NAA 

substrates were immersed in 30 wt% H2O2 for 15 min at 90 °C. After that, NAA substrates and 

a small container filled with 1 mL APTES were placed in a glass desiccator (Figure 2.3b). The 

desiccator was sealed properly and vacuumed using a pump. Then, the desiccator was kept at 

110°C for 3 hours. As a result, silane molecules were immobilised onto the inner surface of 

NAA nanopores. 

 

Figure 2.3. Digital photographs of (a) CVD procedure used for silanisation of NAA sensing 

substrates in this study. (b) Open desiccator shows NAA sensing substrates with APTES 

solution (source [6]).  
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2.4. Real-Time Monitoring of Target Analyte using Reflectometric 

Interference Spectroscopy (RIfS).  

Real-time monitoring presents crucial advantages over batch processing based sensing 

approach. In real-time monitoring, there is the ability to monitor the analyte-receptor binding 

as it occurs, whilst in batch processing sensing, signal can only be measured in the beginning 

and at the end of binding event.  Real-time monitoring also present extensive data points which 

is essential for better understanding of binding kinetics.  

In this thesis, a custom built flow cell is used for real-time monitoring. The flow cell is 

designed to be re-useable for multiple sensing processes. It has a base and top cover which is 

made of borosilicate glass. The borosilicate glass has 0.5 mm holes for inlet and outlet ports. 

Prepared NAA can be accommodated into the flow cell. There is a square cavity of 1.6 × 1.6 

mm2 and 100 μm deep to deliver the analyte fluid (Figure 2.4).  

The RIfS optical setup used in this thesis consists of a white light source (HL 1LL, Ocean 

Optics, USA) connected to one end of an optical probe (R400-7 Vis-NIR, Ocean Optics, USA) 

that carries the light onto NAA sensing platform. The illumination spot was adjusted to 2 mm 

in diameter by a lens system (VIS Collimating Lens, 350−2000 nm, Ocean Optics). The 

reflected light is collected by the collection fibers (the other end of optical probe) and is 

transferred to a miniature spectrometer (USB4000 VIS-NIR, Ocean Optics, USA). A digital 

picture of the RIfS setup combined with flow cell, is shown in Figure 2.4. Note that, the optical 

probe held vertically using a micro manipulator device to focus light on NAA sensing platform 

at a normal angle. Notice that, RIfS optical setup is highly sensitive to external vibrations that 

causes large noises in the RIfS signal. Therefore, the RIfS sensing setup was fixed on an anti-

vibration table to grip all optical assemblies. The reflection spectra of NAA platform were 

acquired from 400 to 1000 nm and saved at intervals of 30 s, with an integration time of 10 ms 
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and 10 average measurements. RIfS spectra were processed in Igor Pro library (Wavemetrics) 

in order to estimate reflection peak position (λPeak) and the effective optical thickness (OTeff) 

of NAAs during the entire process of monitoring. 

 

Figure 2.4. RIfS set up clamped on to anti-vibration table. The RIfS set up consists of: A 

flowing cell which accommodates NAA sensing platform, optical probe, light source, 

spectrometer, optical collection fibres, and micromanipulator device.   

2.5. Molecular Genetic Analysis.  

In this thesis, genomic DNA extraction, polymerase chain amplification (PCR) and rolling 

circle amplification (RCA) are used to detect a known mutation associated with phosphine 

resistant Tribolium castaneum (T. castaneum) in a population. 

2.5.1 Genomic DNA Preparation 

Genomic DNA was extracted from susceptible and resistant populations of T. castaneum, 

using the protocol provided by Wizard® Genomic DNA Purification Kit (Promega). Briefly, 

an individual beetle was freeze dried with liquid nitrogen and homogenised in nuclei lysis 

solution in order to break cells and membrane structures. Then the mixture centrifuged for 10 
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sec at maximum speed. The supernatant of nuclei lysate solution incubated at 37°C for 30 min, 

after 3 μl of RNase was added to degrade RNA molecules. Samples were centrifuged at 14000 

rpm for 4 min at room temperature. The supernatant was then gently mixed with isopropanol 

and again centrifuged as above. Then, the supernatant was removed and pellet was properly 

washed with 70% ethanol and then air dried. Finally, 50 μl of DNA rehydration solution was 

added to each sample tube and were incubated at 4°C for overnight to achieve purified genomic 

DNA templates. Figure 2.5 presents the summary of sequential steps during genomic DNA 

extraction from beetles’ tissue.  

 

Figure 2.5. An illustration of genomic DNA extraction protocol used in this study. 

2.5.2. Bioinformatics Analysis  

Dihydrolipoamide dehydrogenase (DLD) gene nucleotide sequences from T. castaneum 

strain QTC4 Susceptible (KX907540.1) & T. castaneum strain QTC931 (KX907541.1) were 

retrieved from the NCBI database (https://www.ncbi.nlm.nih.gov ). The DLD primer set 

(forward and reverse) used for polymerase chain reaction (PCR), padlock probe for RCA 

https://www.ncbi.nlm.nih.gov/
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reaction, and DLD allele-specific target and non-target sequences were then designed using the 

PrimerQuest design tool (www. idtdna.com/SciTools) in order to confirm the presence of the 

SNP in the T. castaneum strains. The sequence were designed as below: 

 Forward primer for PCR amplification: 

(Tcdld F): 5’ AAAGGAAAATGCTGTCAAGGC 3’ 

 Reverse primer for PCR amplification:  

(Tcdld R): 5’ CTGTAATTTTCCCATGTCCGTTG 3’ 

 Padlock probe for RCA reaction:  

5’ CCAGTTAAAGCCTTGACAGCATTTTCCTAGAATGAA 

GATAGCGCATC GTAGGACGAAAAGTTGCGCTATGCTT 3’ 

Note that, the padlock probe was designed so that the 11 bp at the 5’ end and the 14 bp at 

the 3’ end are complementary to the target (T. castaneum DLD gene region containing SNP. 

The two terminal T nucleotides located at the 3’ end of the padlock sequence dictate the 

specificity of detection towards resistant alleles which contain the AA SNPs at the 

complementary location. 

 DLD allele-specific target sequence for RCA reaction: 

(T.cas_Res_RCA): 5’ GCTTTAACTGGAAGCATAGCG 3’ 

 Non-target sequence for RCA reaction: 

 (T.cas_Sus_RCA): 5’GCTTTAACTGGGGGCATAGCG 3’ 

http://www.idtdna.com/SciTools
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Finally, Biological Sequence Alignment Editor Software (BioEdit) was used in order to 

analyse PCR product sequences 7.  

2.5.3. PCR Amplification and Sequencing  

Genomic DNA was amplified by PCR using the selected primers in a 50-μl reaction 

volume containing 5 μl of genomic DNA, 1 μl of each primer, (forward and reverse). 4 μl 

dNTPs, 0.25 μl Takara Taq- polymerase enzyme in 5 μl 10x reaction buffer supplied with the 

enzyme. Amplification was carried out in a gradient thermocycler, manufactured by Kyratec 

(SC200), programmed for an initial 2 min and 30 sec, then followed by 30 cycles of 30 sec at 

95°C, 30 sec at 56°C, and 30 sec at 72°C, a final step was also performed for 3 min at 72˚C.  

Amplification products were visualized by gel electrophoresis technique using 0.8% 

agarose and RedSafe nucleic acid stain (iNtRON). The remaining PCR product was purified 

using the UltraClean PCR clean-up kit (MO BIO laboratories) and sent for Sanger sequencing 

at AGRF, Adelaide.  

2.5.4. Padlock Probe Ligation and Rolling Circle Amplification (RCA) 

A 73-mer oligonucleotide (as mentioned above) with a 5’ phosphate modification used as 

RCA linear template (padlock probe). The ligation and circularization of the padlock probe is 

dependent on the interaction between these two complementary sequences of padlock probe 

with Allele-specific resistant target/ non-target susceptible (Figure 2.6).  
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Figure 2.6. Target-dependant circularization of padlock probe. (a) Allele-specific resistant 

target, (b) non-target susceptible. 

The following protocol was used for padlock probe ligation. So that, 50 ng of padlock 

probe was used in the ligation assay along with 5 μl of 10x T4 DNA ligase buffer (Thermo 

Fisher Scientific); 5 U T4 DNA ligase (Thermo Fisher Scientific); 1 μl of target or non-target 

probe and 5% w/v Polyethylene glycol (PEG4000) mixed thoroughly with nuclease-free water 

to the final volume of 50 μl. Ligation reactions were incubated for 1 hour at 22°C. Following 

this, 4 μl of ligation mixture was used directly for the RCA reaction. Other components of RCA 

reaction were 2.5 μl 10x phi29 DNA polymerase reaction buffer (Thermo Fisher Scientific), 

200 μM dNTPs also added to the reaction tube. Total volume of each reaction was 25 μl by 

adding sterilized water. Reactions were incubated at 30°C for 2 hours. Figure 2.7a shows the 

complete amplification where target sequence binds to padlock probe. The amplification 

cannot be completed where non-target mismatches to padlock probe (see Figure 2.7b). 

Amplification products were visualized by gel electrophoresis using 0.8% agarose and RedSafe 

nucleic acid stain (iNtRON). 
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Figure 2.7. Ligation-rolling circle amplification for SNP detection.  
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CHAPTER 3. 

Enzymatic Sensor Combining NAA and RIfS  

 

This chapter is based on the following the peer-reviewed article: 

Mahdieh Nemati, Abel Santos, Tushar Kumeria, Dusan Losic. Label-free real-time 

quantification of enzyme levels by interferometric spectroscopy combined with gelatin-

modified nanoporous anodic alumina photonic films. Analytical Chemistry 87 (17) (2015) 

9016-9024.  
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CHAPTER 4. 

NAA Rugate Filters Combined with RIfS for 

Pharmaceutical Detection  

 

This chapter is based on the following the peer-reviewed article: 

Mahdieh Nemati, Abel Santos, Cheryl Suwen Law, Dusan Losic. Assessment of binding 

affinity between drugs and human serum albumin photonic crystals. Analytical Chemistry 88 

(11) (2016) 5971-5980.  
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CHAPTER 5. 

Bilayered NAA Combined with RIfS for Multi-Point 

Sensing Purposes 

 

This chapter is based on the following the peer-reviewed article: 

Mahdieh Nemati, Abel Santos, Dusan Losic. Fabrication and Optimization of Bilayered 

Nanoporous Anodic Alumina Structures as Multi-Point Sensing Platform, Sensors, 18(2) 

(2018), 470.  
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CHAPTER 6. 

Integration of Molecular Biology with Biosensor Devices 

Chapter-6 discusses the significant role of biotechnology techniques in the enhancement of 

biosensor devices followed by a preliminary results towards the integration of these techniques 

with NAA-RIfS. This chapter is written as paper but without of biosensing part which is not 

completed.  
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Abstract 

Food safety is of crucial concern when pesticide resistance develops within crop and stored 

product pests. This can lead to increased pesticide applications resulting from persistent pest 

presence. To manage this matter, monitoring the emergence and development of pesticide 

resistance of grain insects is necessary. Molecular detection of resistant population of insects 

are known as reliable and effective techniques to distinguish between resistant and susceptible 

individuals but the process can be long and requires specialised equipment and know-how. Not 

all mechanism of resistance in insects can be detected by a single mutation event. This type of 

test is restricted to known resistant mechanisms that result from a genetic mutation. In this 

study, we propose new approach based on the ligation-rolling circle amplification (L-RCA) 

assay for its application in detecting the resistant-allele of the dihydrolypoamide 

dehydrogenase gene (DLD) in T. castaneum beetles. T. castaneum beetles are known as one of 

the most important stored grain pests and populations have been known to readily develop 

resistance to fumigants such as phosphine across many areas in Australia. Here, we present L-

RCA reaction, demonstrating simple and rapid method to monitor the resistant target allele. 

The successful application of L-RCA to monitor known insecticide resistant SNPs opens the 

opportunity to transfer the assay to a biosensor platform for point-of-need detection based on 

RIFS spectroscopy 

1. Introduction 

Major issues associated with the current stored grain pest management world-wide is the 

development of pesticide resistance by major grain insects to currently used grain protectants  
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(insecticides such as phosphine) and a strong market demand of pesticide-free grain products. In 

Australia, the national grains industry, specifically grain export worth about $7 billion each year, is 

under threat and requires an urgent alternative to currently used fumigants to protect stored 

grain against resistant insects.   

To protect stored grain against insect infestations in silos, warehouses, jute bags, bunkers 

and ships during transportation, fumigation is an effective and readily applied method1. An 

ideal fumigant like phosphine (PH3) provides a cost-effective method, capable of penetration 

into grain bulk quickly, and is easily eliminated from grain by aeration2.  On the other hand, 

other alternative fumigants, methyl bromide due to the Montreal Protocol has been phased out 

since 2005 due its contribution to ozone depletion 3.  This reliance of phosphine fumigation, 

and the combination of long-term use and sub-optimal fumigation conditions, has led to the 

selection of resistant insects that is rapidly developed in Australia in last 10 years4, 5-7. 

Susceptible adult insects are killed quickly, usually within a day, but immature eggs and pupal 

stages are tolerant of phosphine and can survive short exposures to phosphine, even in high 

concentrations. To kill all stages of the insects’ life cycles, the phosphine gas must be present 

in high enough concentrations for approximately 7 days. Reports indicate that the emergence 

of resistant populations of Tribolium castaneum (Rust red flour beetle) poses a major threat to 

stored agricultural products, specifically in Australia8. A detailed genetic analysis at the 

molecular level by Schlipalius et al. (2002) confirms that there are two positions, or loci, on 

different chromosomes, of the resistant strain that carry resistance alleles which are labelled  as 

primary resistive gene rph1 and secondary resistance gene, labelled rph2. To aid the 

implementation of effective management strategies for phosphine resistant T. castaneum 

populations, it would be desirable to be able to quickly and easily monitor the presence of these  
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genes in trapped insects on the farms. While these two loci have been reported to contain Single 

Nucleotide Polymorphisms (SNPs) associated with phosphine resistance in T. castaneum9, the genetic 

marker that was linked to strong resistance in the beetle, was within the gene encoding the 

metabolic enzyme dihydrolypoamide dehydrogenase (DLD) 10. The SNPs within the DLD gene 

have recently been used as a diagnostic marker for resistant T. castaneum population 

monitoring using the cleaved amplified polymorphic sequence method (CAPS) 11. While this 

technique is a well-established and reliable method for SNP monitoring, it still relies on 

multiple steps including: amplification, digestion and gel electrophoresis. SNPs within the 

genome account for approximately 90% of sequence variations12, and along with their 

association with specific phenotypes such as resistance13, they are commonly used as genetic 

markers for gene mapping, genetic disorders and identifying genetic structure in populations14. 

This has led to an increasing demand for SNP genotyping detection techniques that are cost-

effective, quick, and simple. So far, a variety of techniques have been reported in literature for 

SNP detection including oligonucleotide ligation, primer extension, endonuclease digestion, 

and gene amplification15-21. SNP detection based on isothermal amplification such as Ligation-

Rolling Circle Amplification (L-RCA) offer simplified requirements, in regards to procedure, 

speed and analysis22. The L-RCA reaction consists of a padlock probe designed to match the 

target DNA sequence at the 3’ and 5’ ends. In the presence of the target DNA and DNA ligase, 

the padlock probe becomes the circular template for the RCA reaction. The ligation of the 

padlock probe is highly dependent on the target sequence and can distinguish a single mismatch 

at the 3’end (SNP) making circularization fail, which results in a failed RCA reaction.  

The RCA amplification technique is capable of rapidly synthesizing a long single-stranded 

DNA (more than 1000 bases) by a short circular template (less than 100 bases) 23. The high  
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speed, robustness, and sensitivity of RCA have attracted researchers in the area of biomolecule 

detections. Following this, RCA has been used as a signal-amplification tool on microarray-

based devices for the proteomics and clinical applications 24-28. These microarrays were 

developed with the conjugation of an RCA primer to the detection antibody which, upon 

coupling of the antigen-antibody, is subsequently immobilised onto the microarray surface. 

The primer is used for initiation of an RCA reaction, which can be visualised by the subsequent 

hybridisation of DNA probes in the presence of fluorescent labels. Although microarrays are 

beneficial as sensitive, specific and miniaturised devices, but their application is expensive due 

to requirement of sophisticated equipment, and requirement of fluorescent labelling 29. In order 

to tackle this disadvantage, the exciting developments in the use of RCA have appeared in the 

areas of nanotechnology and optical sensors with the functional nucleic acids 30, 31. For 

example, a label-free detection of DNA amplification using a nano-fluidic diffraction grating 

was carried out in real-time and detected DNA molecules ranging from 1fM to 1pM 32. 

According to this study, the sensing process occurred in light intensity changes which was 

attributed to the change of refractive index. 

 Following this previous work we have developed a method to detect a resistant-allele of 

the DLD gene which could be adapted to our well-established RIFS optical biosensor device 

using NAA platform which combines L-RCA reaction and RIfS detection. The detection of 

phosphine resistant genes from resistant individuals of T. castaneum, which can be used as a 

model insect considering the importance of monitoring populations of these resistant insects in 

grain storage facilities across Australia. Currently this analysis can be done only in two special  
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labs that takes 1-2 days and having portable analytical instruments that can provide fast 

detection is desirable in order to implement appropriate management in a timely fashion. The 

first step toward the development of this type of biosensors for resistant genes detection is to 

establish the solution-based L-RCA as assay for identification of the DLD gene mutation in T. 

castaneum that is schematically presented in Figure 1a. 

 

Figure 1. Schematic illustration of our strategy for resistant allele detection of DLD gene from 

T. castaneum. This represents the procedure for L-RCA amplification using external padlock 

primer (a and b) or self-primed L-RCA amplification (c and d). The coloured configurations 

are as following: purple (susceptible probe non- target), purple with the green dash representing 

the SNP site (resistant probe target), blue (padlock probe), yellow (DNA polymerase), red 

(padlock primer), green (amplification product), and the grey star is the sign of no reaction 

occurring. The reactions start from stage 1 and terminate in stage 3. Stage 1 is the ligation 

process which are successful in 2a and 2c due to the presence of the target allele. Successful 

ligation results in amplification products from the RCA reaction as shown in 3a and 3c. 

However, amplification product was not generated in the lack of circular probe (b and d).  

 

To achieve that, we develop a SNP-based detection strategy using ligation- rolling circle 

amplification (L- RCA) for the purpose of resistant-allele identification of DLD gene from        
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T. castaneum that could be implemented into NAA-RIfS system schematically presented in 

Figure 2. The sensing concept is based on label-free and real-time monitoring of binding events 

and producing RCA products by estimating the changes in effective optical thickness (i.e., 

sensing principle) measured by RIfS. The sensing elements inside NAA nanopores is composed 

of several components including specific surface chemistry for selective capturing of target 

probe (i.e., SNP region) required for subsequent RCA reaction. 

 

Figure 2. A schematic illustration of proposed design for resistant-allele detection of DLD 

gene from T. castaneum using NAA-RIfS biosensor. The sensing elements inside NAA pores 

is composed of several components including silane terminated amines (APTES) used for 

immobilization of streptavidin that is used to capture the biotinylated sequence which is 

complementary to downstream of target site. Target probe (with SNP site) required for 

initiation of ligation and subsequent RCA reaction for detection of resistant-allele of DLD gene 

from T. castaneum. The effective optical thickness changes in NAA pores is measured by RIfS 

in real-time.  
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Herein, we present a SNP-based detection strategy that is performed using solution-based 

ligation- rolling circle amplification (L- RCA) for the purpose of resistant-allele identification 

of DLD gene from T. castaneum. 

2. Experimental Section 

2.1. Insect Strains. The T. castaneum strains used in this study are the QTC4 (phosphine 

susceptible) and QTC279 (phosphine resistant) strains which were kindly provided by 

department of agriculture and fisheries, the state of Queensland.  

2.2. Preparation of Genomic DNA. Genomic DNA was extracted from 4 adult individuals, 

susceptible and resistant populations of T. castaneum, using the protocol described by Wizard® 

Genomic DNA Purification Kit (Promega). Briefly, an individual beetle was homogenised in 

nuclei lysis solution, then centrifuged for 10 sec at maximum speed. The supernatant of nuclei 

lysate solution incubated at 37°C for 30 min, after 3 μl of RNase was added. Samples were 

centrifuged at 14000 rpm at room temperature for 4 min. The supernatant was then gently 

mixed with isopropanol and again centrifuged as above. Here, the supernatant was removed 

and pellet was washed with 70% ethanol and then air dried. Finally, 50 μl of DNA rehydration 

solution was added to each sample tube and were incubated at 4°C for overnight. The purified 

genomic DNA templates were subsequently used for PCR amplification. 

2.3. PCR Amplification and Sequencing. In order to confirm the presence of the SNP in the 

T. castaneum strains used here, the appropriate gene region was amplified using a DLD primer 

set designed using the PrimerQuest design tool (www. idtdna.com/SciTools), against the 

dihydrolipoamide dehydrogenase (DLD) gene nucleotide sequences from T. castaneum strain  

http://www.idtdna.com/SciTools
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QTC4 Susceptible (KX907540.1) & T. castaneum strain QTC931 (KX907541.1) retrieved 

from the NCBI database (https://www.ncbi.nlm.nih.gov ). Genomic DNA was amplified by 

PCR using the selected primers in a 50-μl reaction volume containing 5 μl of genomic DNA, 

1 μl of each primer, (Tcdld F: 5’ AAAGGAAAATGCTGTCAAGGC 3’) and reverse (Tcdld 

R: 5’ CTGTAATTTTCCCATGTCCGTTG 3’). 4 μl dNTPs, 0.25 μl Takara Taq- polymerase 

enzyme in 5 μl 10x reaction buffer supplied with the enzyme. Then, amplification was carried 

out in a supercycler gradient cycler, manufactured by Kyratec (SC200), programmed for an 

initial 2 min and 30 sec, then followed by 30 cycles of 30 sec at 95°C, 30 sec at 56°C, and 30 

sec at 72°C, a final step was also performed for 3 min at 72˚C. Then, Amplification products 

were visualized by gel electrophoresis technique using 0.8% agarose and RedSafe nucleic acid 

stain (iNtRON). The remaining PCR product was purified using the UltraClean PCR clean-up 

kit (MO BIO laboratories) and sent for Sanger sequencing at AGRF, Adelaide. The sequences 

were analysed using Biological Sequence Alignment Editor Software (BioEdit) 33.  

2.4. Ligation-Rolling Circle Amplification: Resistant SNP Detection Assay. A 73-mer 

oligonucleotide with a 5’ phosphate modification (5’ 

CCAGTTAAAGCCTTGACAGCATTTTCCTAGAATGAAGATAGCGCATCGTAGGAC

GAAAAGTTGCGCTATGCTT 3’) was designed and synthesized to be used as RCA linear 

template (padlock probe). The padlock probe was designed so that the 11 bp at the 5’ end and 

the 14 bp at the 3’ end are complementary to the target (T. castaneum DLD gene region 

containing SNP). The two terminal T nucleotides located at the 3’ end of the padlock sequence 

dictate the specificity of the assay to detect only the resistant alleles which contain the AA 

SNPs at the complementary location. The ligation and circularization of the padlock probe is 

dependent on the interaction between these two complementary sequences (see Figure 3).  

https://www.ncbi.nlm.nih.gov/
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Allele-specific target (T.cas_Res_RCA - 5’ GCTTTAACTGGAAGCATAGCG 3’) and non-

target (T.cas_Sus_RCA -  5’GCTTTAACTGGGGGCATAGCG 3’) sequences were 

synthesized to represent the SNP-containing region of the T. castaneum DLD gene. 

 

Figure 3. Target-dependant circularization of padlock probe. (a) Allele-specific resistant 

target, (b) non-target susceptible. 

2.5. Padlock Probe Ligation and Rolling Circle Amplification (RCA). The L-RCA assays 

begin with the target-dependent ligation of the padlock probe. For detail of reaction 

compositions see Table 1 in Supplementary Information. Specifically, 50 ng of padlock probe 

was used in the ligation assay along with 5 μl of 10x T4 DNA ligase buffer (Thermo Fisher 

Scientific); 5 U T4 DNA ligase (Thermo Fisher Scientific); 1 μl of target or non-target probe 

and 5% w/v Polyethylene glycol (PEG4000) mixed thoroughly with nuclease-free water to the 

final volume of 50 μl. Ligation reactions were incubated for 1 hour at 22°C. Following this, 4 

μl of ligation mixture was used directly for the RCA reaction. Other components of RCA 

reaction were 2.5 μl 10x phi29 DNA polymerase reaction buffer (Thermo Fisher Scientific), 

200 μM dNTPs also added to the reaction tube, and +/- 0.6 μM circular padlock probe for some 

reactions (Supplementary information). Total volume of each reaction was 25 μl by adding  
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sterilized water. Reactions were incubated at 30°C for 2 hours. Amplification products were 

visualized by gel electrophoresis using 0.8% agarose and RedSafe nucleic acid stain (iNtRON). 

3. Result and Discussion  

3.1. DLD Amplification and Sequencing. In order to confirm the presence of the resistant 

allele in the T. castaneum specimens we were provided, the relevant region of the DLD gene 34 

was amplified from the genomic DNA template extracted from four adult T. castaneum 

individuals (Figure 4).  

 

Figure 4. Visualization of resistant-susceptible amplified DLD gene products (100 bp) from 

gDNA of QTC279 and QTC4 T. castaneum strains by agarose gel electrophoresis of PCR 

product with negative control tests. The first lane contains the molecular weight ladder (50-

2000 bp). The other lanes are labelled representing various PCR reactions in this study, (a) T.  
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castaneum QTC279 DLD-rxn 1, (b) T. castaneum QTC4 DLD-rxn 3, (c) T. castaneum QTC279 

DLD-rxn 2, (d) T. castaneum QTC4 DLD-rxn 4, (e) and (f) H2O negative controls. PCR 

products of lanes a, b, c and d represent the DLD gene amplified from T. castaneum genomic 

DNA.  

The average length of quality bases obtained from Sanger sequencing the purified PCR 

products was 37 bp and this provided clear sequence over the SNP-containing region of the 

DLD gene.  

3.2. Sequence Analysis. Reverse sequences for the TcDLD primers were aligned using BioEdit 

software 33, against known susceptible (QTC4- accession KX907540.1) and resistant (931- 

KX907541.1) stains from NCBI and two SNPs (A-G) identified (Figure 5).  

 

Figure 5. Sequence alignment of PCR product in this study with GenBank sequences. “8R Rev 

Sequence Mahdieh” represented the susceptible T. castaneum population, showing GG at 

position 10 and 11. The “7R Rev Sequence Mahdieh” confirmed the resistant SNP site showing 

AA positions 10 and 11in the resistant population. 

3.3. L-RCA Assay. The L-RCA protocol was able to distinguish between the synthetic 

resistant probe as target (Figure 6A and 6C) and the susceptible probe as non-target (Figure 

6E and 6F). This indicates that the assay could distinguish between phosphine resistant and 

phosphine susceptible alleles of the DLD gene in T. castaneum based on the SNP site. We have 

used single stranded oligonucleotides as our targets here which are also capable of acting as 

the primer of the RCA reaction. However, if we were to move on to a genomic DNA target, 

we would need to include a padlock primer in order to initiate the L- RCA reaction after the 

ligation. Here, we have also shown that the L- RCA reaction takes place in the presence of this     
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padlock primer (Figure 6C). L- RCA enabled the continuous replication of the ligated circular 

single-stranded target DNA molecule. This resulted in a large amplification product which can 

be seen as greater than 1000 bp compared to corresponding ladder lane. Ligase negative 

reactions including 5B, 5D and resistant/susceptible target-free reactions including 5G and 5H 

did not show any amplification. This confirms that L-RCA reaction is dependent on the 

presence of resistant sequence. 

 

Figure 6. L-RCA visualization. Lanes are labelled representing L-RCA tests in this study, (A) 

resistant target-self primed, (B) Ligase free reaction-resistant target-self primed, (C) resistant 

target- primed, (D) Ligase free reaction-resistant target-primed, (E) susceptible non target-self 

primed, (F) susceptible non target- primed, (G) Negative control-self primed, (H) Negative 

control-primed. Ladder lane 100-1000 bp is highlighted as standard valuation. L-RCA products 

of lanes A, C are visible.  
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4. Conclusion 

Here we have demonstrated the feasibility of using the L-RCA reaction to monitor for 

resistant alleles in T. castaneum. While only demonstrated using synthetic single-stranded 

oligonucleotides as a model system for the T. castaneum DLD gene, we are confident with 

further work, this would translate to detection of the resistance-related SNP using the PCR 

product, or more ideally, genomic DNA as the template in the reaction. In the future, we hope 

to transfer this solution-based genotyping assay to a biosensor platform capable of monitoring 

biological events by detecting molecular changes at a solution/surface interface. Detection 

platforms using DNA on solid supports, such as microarrays, allow for the confinement of 

reactions based on location on the support and lead to the ability to multiplex with other gene 

targets. Multiplexing would be beneficial in monitoring for resistance mechanisms based on 

more than one biochemical pathway and involving SNPs on more than one gene target. 

Microarrays, however, still require florescent labelling and the corresponding fluorometry-

based readers, and can sometimes suffer with specificity and sensitivity issues 35. An L-RCA 

reaction hybridized onto a surface could not only be a sensitive SNP detection method 36,37 but 

additionally, by coupling the reaction to a transduction mechanism sensitive to small changes 

38, 39, the amplification event could potentially be monitored in real-time without the need of 

fluorescent labels and readers.  

Insect resistance to insecticides is an ever evolving problem and technology towards 

potentially enabling quick and easy surveillance of known resistant targets in the field would 

be a helpful tool for pest management. While we focus on genotyping applications in agricult- 
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ure, L-RCA has also gained considerable attention in advanced bio-recognition studies for 

protein detection. For instance, highly sensitive protein aptamer detections were developed 

based on L-RCA 26, 28. This increases the potential applications for an L-RCA based biosensor 

platform for detection of both protein and nucleic acid targets. While there are many other 

applications in agriculture such as identification of pathogens and disease, this type of sensor 

could be of use in other fields such as health and medicine and environmental monitoring.  

NOTE: This proof-of-concept SNP detection assay is not completed during this PhD thesis to 

prove proposed.   
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CHAPTER 7. 

Conclusions and Recommendations for Future Works 

Chapter- 7 summarized the research that have been carried and reported in this thesis. This 

chapter also highlights some perspectives for future work towards smart biosensing technology 

based on NAA and RIfS.  
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7.1. Conclusions 

7.1.1. Summary 

The research presented in thesis aims to advance the knowledge about the electrochemical 

structural engineering and optical characteristics of NAA porous platforms, their surface 

chemistry modification, and application for development of  a label-free, ultrasensitive, 

portable, and low-cost sensing of biomolecules  using reflectometric interference spectroscopy 

(RIFS). The starting point and major contribution of this thesis is understanding and designing 

of NAA sensing platform using electrochemical anodization process to improve their optical 

and photonic properties used for RIFS sensing. For that purpose several electrochemcial 

anodization procedures were developed to make different NAA structures with straight, 

multilayered layered pore structures and rugate photonic crystal structures to optimise their 

sensing performances for different applications. Understanding and optimising of NAA 

structural pore geometry, in particular the ability to generate complex photonic structure was 

used to develop a NAA rugate filters and NAA bilayered structures. The second major 

contribution of this thesis is the establishment of surface functionalisation of prepared NAA 

sensing platforms in order to modify their surface chemistry to provide selective surface 

functional groups for biosensing purposes. This concept was used to develop a label-free, 

ultrasensitive, portable, and low-cost detection device for determining bio-analytes in 

pharmaceutical and medical scenarios. These complex NAA photonic structures were 

selectively functionalised with silane in order to prove their sensing performances using 

selected model molecules including proteins, enzymes, organic molecules and DNA. The 

sensing performance of various NAA structures was optimised using RIfS monitoring and then 

proved that structural engineering of NAA photonic structure plays crucial roles in determining 

the sensing performance of the system. The final element of this thesis investigates is the use 
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of a molecular assay, a Ligation-Rolling Circle Amplification (L-RCA) assay that could 

potentially be incorporated into our biosensing platform for a portable real-time genotyping 

system to use in agricultural applications. Specifically, an assay was designed to detect the 

presence of Single Nucleotide Polymorphisms associated with phosphine resistance in insect 

pests. This high yield amplification technique makes it possible to potentially adapt this assay 

into flow conditions used for biosensing with our NAA and RIfS in future. The following 

sections outline the specific conclusions drawn from all the studies included in this thesis.  

7.1.2. Label-Free Real-Time Quantification of Enzyme Levels by 

Interferometric Spectroscopy Combined with Gelatin-Modified Nanoporous 

Anodic Alumina Photonic Films (Chapter 3) 

A selective and highly sensitive, label-free, and portable biosensor for detection of trypsin 

using NAA as the sensing substrate and RIfS as the sensing technique was developed. The 

following conclusions were drawn from this study. 

1- Series of NAA sensing platforms were successfully fabricated with hexagonally 

packed cylindrical pores with controllable pore diameters and length that controlled by 

carefully controlled anodization parameters.  

2- It was demonstrated that the NAA pore surface could be easily modified with amino 

functional groups using silane chemistry (APTES) via a simple process of chemical 

vapour deposition (CVD). The CVD method provided active terminal group for further 

selective binding of biomolecules to act as sensing probe for broad range of analyte 

molecules. In this chapter, the surface of NAA was specifically modified with silane 

having amino-terminus to provide the sensing platform with selectivity towards trypsin 

molecules.  
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3- The developed trypsin biosensor shows a broad analysis range from 0.0125 to 1.0 mg 

mL−1 trypsin molecules with a linear detection range of 0.9140. The lower limit of 

detection was 0.025 ± 0.005 mg mL−1 trypsin solution. 

The sensor was selective and sensitive for detection of trypsin molecules, not only 

towards analyte molecules but also towards sensing element. This was confirmed by 

monitoring the RIfS response on exposure to aqueous solutions of haemoglobin instead 

of gelatin (i.e. sensing element) at the concentration of 1 mg mL-1.  

4- Finally, the binding kinetics of trypsin with gelatin on NAA surface were obtained by 

fitting the RIfS data to Michaelis−Menten model. The obtained fitting curve suggests 

that the enzymatic reaction follow the reaction velocity as the data fits well to 

Michaelis−Menten non-linear curve. These results showed capability of NAA platform 

not only to be used for sensing but also for other type of applications such as study 

binding kinetics and enzymatic reactions. 

7.1.3. Assessment of Binding Affinity between Drugs and Human Serum 

Albumin Using Nanoporous Anodic Alumina Photonic Crystals (Chapter4) 

An innovative fabrication and optimisation of NAA produced novel porous crystals as 

rugate filters and the performance of the prepared rugate filters was established and its 

application for specific absorption/desorption human serum albumin with different 

concentrations of indomethacin was demonstrated. The following conclusions were drawn 

from this study.  

1- A sinusoidal pulse anodization approach was developed to prepare NAA-RFs with 

periodically ordered pore structures and specific optical and photonic properties. Nine 

different types of NAA-RFs were fabricated by modifying the anodization parameters 

(i.e., anodization period [TP], and anodization offset [JOffset]), which enabled the 
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rationally engineering of effective medium of NAA in depth. These NAA-RFs display 

complex optical reflection spectrum with non-uniform stopband.  

2- The optical characteristics of these nine NAA-RFs were assessed by measuring two 

characteristic optical sensing parameters (i.e. reflection peak of stopband and effective 

optical thickness of the film), by absorption/desorption with indomethacin molecules. 

The aforementioned sensing parameters showed effective optical thickness is stronger 

and more sensitive sensing parameter than reflection peak changes. 

3- The obtained optical response data from these structures revealed that the most 

sensitive structures toward indomethacin molecules were NAA-RF (TP =750, JOffset = 0.42) 

and NAA-RF (TP =750, JOffset = 0.14) for reflection peak changes and effective optical 

thickness changes, respectively.  

4- The results showed that the fabricated NAA-RFs were highly selective towards 

detection of indomethacin by assessment of binding affinity between human serum 

albumin and a set of drug. Lastly, the data was fitted to contour map to verify and 

validated the dependence of sensitivity on the fabrication parameters (TP and Joffset) for 

reflection peak and effective optical thickness changes.  

5- The proposed sensing system combining HSA-modified NAA-RFs and RIfS provided 

a reliable binding affinity assessment between human serum albumin and drugs with a 

set of features such as portability, low cost, and easy operation that makes it a 

promising alternative to benchmark techniques such as SPR. 

Therefore, this chapter contributes to the development of optical biosensor based on the 

optimisation and structural engineering of the NAA sensing platform with enhanced RIfS 

signals.  
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7.1.4. Structural Engineering and Optimization of Bilayered Nanoporous 

Anodic Alumina Structures as Multi-Point Sensing Platform (Chapter 5) 

An innovative strategy to achieve the optimal design of hierarchical structures on NAA sensing 

platforms with multiple optical layers (i.e. top layer of hierarchical structure, bottom layer of 

hierarchical structure, and combination of top and bottom layer) was established to advance 

optical sensing performance The sensing performance of the bilayered NAA structures 

specifically modified with human serum albumin was assessed for sensing of model molecule 

quercetin in order to evaluate ability of this platform for multi sensing applications. The 

following conclusions were drawn from this study.  

1- Three types of bilayered NAA photonic structures featuring different pore geometries 

(i.e. pore diameters and pore lengths) are fabricated by tailoring the anodization time 

and number of anodization steps combined with chemical pore widening steps  

2- The structural characterization of bilayered NAA demonstrated hierarchical nanopore 

shape with larger pore diameter on top and smaller pore diameter on the bottom. 

3- The optical characteristics of the triple of NAA photonic structures were evaluated by 

fast Fourier transform analysis and RIfS spectra showing three distinctive peaks which 

are capable to support monitoring scheme, independently.  

4- The RIfS data concludes that bilayered NAAs are multi-functional sensing platforms 

which enables monitoring sensing parameter (i.e. effective optical thickness changes) 

at different levels of sensitivity. The sensing performance under specific binding 

reaction (i.e. human serum albumin and quercetin) certifies the optimal bilayered NAA 

structure.  The bottom layer with less thickness features higher sensitivity than top layer 

with larger thickness showing capability of this platform to selectively detect molecules 

using pore structure with different diameters.  
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5- Finally, it was concluded that all these 3 layers can be used independently for sensing 

which means with different surface chemistries this bilayered NAA can be used for 

multi analyte biosensing.  

7.1.5. Towards Detection of Single Nucleotide Polymorphism Associated 

with Phosphine Resistance in Tribolium Castaneum Using Ligation-Rolling 

Circle Amplification (Chapter 6) 

The long term aim of this work is to design for resistant-allele detection of DLD gene from T. 

castaneum using NAA-RIfS. Although the proof-of-concept is not completed yet, a 

preliminary result is based on a Ligation-Rolling Circle Amplification (L-RCA) technique for 

detection of single nucleotide polymorphisms within a gene, known to be associated with 

insecticide resistance was developed. The following conclusions were drawn from this study.  

1- The DLD gene from Tribolium castaneum specimens was successfully amplified using 

polymerase chain reaction. The SNP-containing region was confirmed in the resistant 

population by sequence analysis.  

2- Using a synthetic, model system to test the assay design, the amplification-RCA, 

product (>1000 bp). A product was only produced in the assay when tested against an 

oligonucleotide (oligo) representing the resistant allele sequence was present, and not 

when the oligo encoding the susceptible allele sequence, demonstrating the specificity 

of the test. 

7.2. Recommendations for future works 

This thesis advances the knowledge about the structural engineering and optical features 

of NAA as a powerful RIfS sensing platform for broad biosensing applications. The results 
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presented in this thesis are very encouraging showing great potential of NAA platform that 

needs further improvement and advancement for their translation in real sensing devices. The 

following points outline future directions in the field of NAA optical platform towards 

development of portable and low-cost RIFS biomedical devices.  

A number of future research activates and new ideas generated from this thesis that requires 

more studies are outlined below: 

1- Engineering of advanced NAA structures: Although a variety of NAA photonic 

structures have been produced in this thesis and by other groups s more work is 

required to develop more versatile photonic structures in NAA such as multi-layered 

pore structures, multiple branched pore structure, complex pore architectures, to 

advance their sensing performances. NAA photonic crystals fabricated by 

electrochemical anodization using variable anodization profile (current or voltages) 

and different anodization parameters need further optimisation to make structures with 

precise defined pore diameters, periodicity and length of theses structure with better 

understanding their impact on RIFS signal required for biosensing.  These new NAA 

photonic structures could provide higher sensitivity detection of a large variety of 

biomolecules that could also provide versatility of molecules detection, improve 

sensitivity, selectivity and sensing device design.   

2- Surface modifications and functionalization: The other important part on 

development of NAA optical sensing is surface modification of internal pore structures 

with specific functional groups able to provide selective binding of targeting molecules 

with high sensitivity. This part is not deeply explored in this thesis and considering 

that number of techniques are available to modify the surface chemistry of NAA and 

further improve performances of these platforms and extend the application for broad 

number of molecules in biomedical, pharmaceutical and environmental fields. 
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Specifically developed of layered surface chemistry inside pores (bilayered or multiple 

layered) has potential to develop highly advanced platform for multi analyte detection 

bale to provide analysis of molecules from complex matrix. Furthermore, more 

research is recommended to develop surface modification strategies to prepare these 

“dressed chemistries” inside pores for specific and selective binding of several 

biomolecules.   

3- DNA and Gene Biosensing: Thirdly, further investigation is needed into the 

feasibility and applicability of a sensitive and selective genotyping biosensor based on 

NAA and RIfS. We have focussed on an agriculture application as fast detection and 

in-field diagnostic capabilities are of great interest in order to make timely control 

decisions in terms of pest management, yet little is published in this area.  We have 

designed and begun to investigate the feasibility of detecting SNPs with a solution-

based L-RCA assay. However, time limitations meant we have not yet determined if 

this assay can effectively be coupled to the NAA sensor surface. Although, previously 

the NAA surface has shown to be functional when be modified with DNA probes, 

therefore, NAA based RIfS has the potential to be used for this L-RCA allele detection 

technique. This type of biosensor would provide the opportunity to monitor insect pest 

populations on a label-free platform and in real-time.  

4- Sensor and device design improvement: In this work to evaluate sensing 

performance of fabricated  NAA platform (10 mm in diameter) we used special flow 

cell combined with RIFS and notebook PC that are not optimised for potential real 

application. Therefore new design with miniaturised NAA platform combined with 

new microfluidic system   is desirable that will require minor amount of sample and 

also improve sensitivity. 
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5- Applications: In this thesis the focus of sensing by NAA platform was on 

biomolecules for biomedical applications. However, this platform is versatile and can 

be used for broad applications so more studies are recommended to develop devices 

for industrial, environmental, and agricultural purposes. 

 

 

 

 

 




