58,304 research outputs found

    Chameleon Vector Bosons

    Get PDF
    We show that for a force mediated by a vector particle coupled to a conserved U(1) charge, the apparent range and strength can depend on the size and density of the source, and the proximity to other sources. This "chameleon" effect is due to screening from a light charged scalar. Such screening can weaken astrophysical constraints on new gauge bosons. As an example we consider the constraints on chameleonic gauged B-L. We show that although Casimir measurements greatly constrain any B-L force much stronger than gravity with range longer than 0.1 microns, there remains an experimental window for a long range chameleonic B-L force. Such a force could be much stronger than gravity, and long or infinite range in vacuum, but have an effective range near the surface of the earth which is less than a micron.Comment: 10 page

    The Quantum Modular Group in (2+1)-Dimensional Gravity

    Get PDF
    The role of the modular group in the holonomy representation of (2+1)-dimensional quantum gravity is studied. This representation can be viewed as a "Heisenberg picture", and for simple topologies, the transformation to the ADM "Schr{\"o}dinger picture" may be found. For spacetimes with the spatial topology of a torus, this transformation and an explicit operator representation of the mapping class group are constructed. It is shown that the quantum modular group splits the holonomy representation Hilbert space into physically equivalent orthogonal ``fundamental regions'' that are interchanged by modular transformations.Comment: 23 pages, LaTeX, no figures; minor changes and clarifications in response to referee (basic argument and conclusions unaffected

    Comparative Quantizations of (2+1)-Dimensional Gravity

    Full text link
    We compare three approaches to the quantization of (2+1)-dimensional gravity with a negative cosmological constant: reduced phase space quantization with the York time slicing, quantization of the algebra of holonomies, and quantization of the space of classical solutions. The relationships among these quantum theories allow us to define and interpret time-dependent operators in the ``frozen time'' holonomy formulation.Comment: 24 pages, LaTeX, no figure

    Probing doubly charged Higgs in e+ee^+ e^- Colliders in 3-3-1 Model

    Full text link
    The SU(3)_L\otimesU(1)_N electroweak model predicts new Higgs bosons beyond the one of the standard model. In this work we investigate the signature and production of doubly charged Higgs bosons in the ee+e^-e^+ International Linear Collider and in the CERN Linear Collider. We compute the branching ratios for the doubly charged gauge bosons of the model.Comment: 17 pages, 12 figure

    Quantum geometry from 2+1 AdS quantum gravity on the torus

    Full text link
    Wilson observables for 2+1 quantum gravity with negative cosmological constant, when the spatial manifold is a torus, exhibit several novel features: signed area phases relate the observables assigned to homotopic loops, and their commutators describe loop intersections, with properties that are not yet fully understood. We describe progress in our study of this bracket, which can be interpreted as a q-deformed Goldman bracket, and provide a geometrical interpretation in terms of a quantum version of Pick's formula for the area of a polygon with integer vertices.Comment: 19 pages, 11 figures, revised with more explanations, improved figures and extra figures. To appear GER

    Application of Remote Sensing Techniques for Appraising Changes in Wildlife Habitat

    Get PDF
    An attempt was made to investigate the potential of airborne, multispectral, line scanner data acquisition and computer-implemented automatic recognition techniques for providing useful information about waterfowl breeding habitat in North Dakota. The spectral characteristics of the components of a landscape containing waterfowl habitat can be detected with airborne scanners. By analyzing these spectral characteristics it is possible to identify and map the landscape components through analog and digital processing methods. At the present stage of development multispectral remote sensing techniques are not ready for operational application to surveys of migratory bird habitat and other such resources. Further developments are needed to: (1) increase accuracy; (2) decrease retrieval and processing time; and (3) reduce costs

    The Divine Clockwork: Bohr's correspondence principle and Nelson's stochastic mechanics for the atomic elliptic state

    Get PDF
    We consider the Bohr correspondence limit of the Schrodinger wave function for an atomic elliptic state. We analyse this limit in the context of Nelson's stochastic mechanics, exposing an underlying deterministic dynamical system in which trajectories converge to Keplerian motion on an ellipse. This solves the long standing problem of obtaining Kepler's laws of planetary motion in a quantum mechanical setting. In this quantum mechanical setting, local mild instabilities occur in the Kelperian orbit for eccentricities greater than 1/\sqrt{2} which do not occur classically.Comment: 42 pages, 18 figures, with typos corrected, updated abstract and updated section 6.

    Chern-Simons Quantization of (2+1)-Anti-De Sitter Gravity on a Torus

    Get PDF
    Chern-Simons formulation of 2+1 dimensional Einstein gravity with a negative cosmological constant is investigated when the spacetime has the topology R×T2 R\times T^{2}. The physical phase space is shown to be a direct product of two sub-phase spaces each of which is a non-Hausdorff manifold plus a set with nonzero codimensions. Spacetime geometrical interpretation of each point in the phase space is also given and we explain the 1 to 2 correspondence with the ADM formalism from the geometrical viewpoint. In quantizing this theory, we construct a "modified phase space" which is a cotangnt bundle on a torus. We also provide a modular invariant inner product and investigate the relation to the quantum theory which is directly related to the spinor representation of the ADM formalism. (This paper is the revised version of a previous paper(hep-th/9312151). The wrong discussion on the topology of the phase space is corrected.)Comment: latex 28 page

    Global constants in (2+1)--dimensional gravity

    Full text link
    The extended conformal algebra (so)(2,3) of global, quantum, constants of motion in 2+1 dimensional gravity with topology R x T^2 and negative cosmological constant is reviewed. It is shown that the 10 global constants form a complete set by expressing them in terms of two commuting spinors and the Dirac gamma matrices. The spinor components are the globally constant holonomy parameters, and their respective spinor norms are their quantum commutators.Comment: 14 pages, to appear in Classical and Quantum Gravity, Spacetime Safari: Essays in Honor of Vincent Moncrief on the Classical Physics of Strong Gravitational Field
    corecore