969 research outputs found

    Climate oscillations, glacial refugia, and dispersal ability: factors influencing the genetic structure of the least salmonfly, Pteronarcella badia (Plecoptera), in Western North America

    Get PDF
    Background: Phylogeographic studies of aquatic insects provide valuable insights into mechanisms that shape the genetic structure of communities, yet studies that include broad geographic areas are uncommon for this group. We conducted a broad scale phylogeographic analysis of the least salmonfly Pteronarcella badia (Plecoptera) across western North America. We tested hypotheses related to mode of dispersal and the influence of historic climate oscillations on population genetic structure. In order to generate a larger mitochondrial data set, we used 454 sequencing to reconstruct the complete mitochondrial genome in the early stages of the project. Results: Our analysis revealed high levels of population structure with several deeply divergent clades present across the sample area. Evidence from five mitochondrial genes and one nuclear locus identified a potentially cryptic lineage in the Pacific Northwest. Gene flow estimates and geographic clade distributions suggest that overland flight during the winged adult stage is an important dispersal mechanism for this taxon. We found evidence of multiple glacial refugia across the species distribution and signs of secondary contact within and among major clades. Conclusions: This study provides a basis for future studies of aquatic insect phylogeography at the inter-basin scale in western North America. Our findings add to an understanding of the role of historical climate isolations in shaping assemblages of aquatic insects in this region. We identified several geographic areas that may have historical importance for other aquatic organisms with similar distributions and dispersal strategies as P. badia. This work adds to the ever-growing list of studies that highlight the potential of next-generation DNA sequencing in a phylogenetic context to improve molecular data sets from understudied groups

    Extracellular Matrix Dynamics in Hepatocarcinogenesis: a Comparative Proteomics Study of PDGFC Transgenic and Pten Null Mouse Models

    Get PDF
    We are reporting qualitative and quantitative changes of the extracellular matrix (ECM) and associated receptor proteomes, occurring during the transition from liver fibrosis and steatohepatitis to hepatocellular carcinoma (HCC). We compared two mouse models relevant to human HCC: PDGFC transgenic (Tg) and Pten null mice, models of disease progression from fibrosis and steatohepatitis to HCC. Using mass spectrometry, we identified in the liver of both models proteins for 26 collagen-encoding genes, providing the first evidence of expression at the protein level for 16 collagens. We also identified post-transcriptional protein variants for six collagens and lysine hydroxylation modifications for 14 collagens. Tumor-associated collagen proteomes were similar in both models with increased expression of collagens type IV, VI, VII, X, XIV, XV, XVI, and XVIII. Splice variants for Col4a2, Col6a2, Col6a3 were co-upregulated while only the short form of Col18a1 increased in the tumors. We also identified tumor specific increases of nidogen 1, decorin, perlecan, and of six laminin subunits. The changes in these non-collagenous ECM proteins were similar in both models with the exception of laminin β3, detected specifically in the Pten null tumors. Pdgfa and Pdgfc mRNA expression was increased in the Pten null liver, a possible mechanism for the similarity in ECM composition observed in the tumors of both models. In contrast and besides the strong up-regulation of integrin α5 protein observed in the liver tumors of both models, the expression of the six other integrins identified was specific to each model, with integrins α2b, α3, α6, and β1 up-regulated in Pten null tumors and integrins α8 and β5 up-regulated in the PDGFC Tg tumors. In conclusion, HCC–associated ECM proteins and ECM–integrin networks, common or specific to HCC subtypes, were identified, providing a unique foundation to using ECM composition for HCC classification, diagnosis, prevention, or treatment

    Cell-penetrating peptides as transporters for morpholino oligomers: effects of amino acid composition on intracellular delivery and cytotoxicity

    Get PDF
    Arginine-rich cell-penetrating peptides (CPPs) are promising transporters for intracellular delivery of antisense morpholino oligomers (PMO). Here, we determined the effect of L-arginine, D-arginine and non-α amino acids on cellular uptake, splice-correction activity, cellular toxicity and serum binding for 24 CPP−PMOs. Insertion of 6-aminohexanoic acid (X) or β-alanine (B) residues into oligoarginine R8 decreased the cellular uptake but increased the splice-correction activity of the resulting compound, with a greater increase for the sequences containing more X residues. Cellular toxicity was not observed for any of the conjugates up to 10 μM. Up to 60 μM, only the conjugates with ⩾ 5 Xs exhibited time- and concentration-dependent toxicity. Substitution of L-arginine with D-arginine did not increase uptake or splice-correction activity. High concentration of serum significantly decreased the uptake and splice-correction activity of oligoarginine conjugates, but had much less effect on the conjugates containing X or B. In summary, incorporation of X/B into oligoarginine enhanced the antisense activity and serum-binding profile of CPP−PMO. Toxicity of X/B-containing conjugates was affected by the number of Xs, treatment time and concentration. More active, stable and less toxic CPPs can be designed by optimizing the position and number of R, D-R, X and B residues

    The ion seeps tonight: Assessing ionic transport in multilayered nanocomposites

    Get PDF
    Figure 6 – Schematic of cation (M+) transport through an organized multilayered composite. Controlling ion transport across membranes and interfaces is one of the central themes challenging technological pursuits ranging from corrosion to energy storage and chemical separations. Here, we present several examples in which we have studied the application of multilayer nanocomposites to regulate ion transport. These composites comprise organized layers of functional or structural elements, integrated within composites such that the specific nanostructure and composition of the materials play important roles in defining ionic interactions and mobility. In cases such as corrosion inhibition, thin film composite coatings are intended to block ionic transport, retarding deleterious corrosion reactions. We show that by manipulating the materials chemistry of highly organized polymer clay nanocomposite thin film barriers, it is possible to significantly increase corrosion resistance of steel samples in a simulated sea water environment. In contrast, for energy storage applications such as batteries, composite separators capable of rapid ionic diffusion are desired for high current performance. We explore how layered composite structures may provide effective ion diffusion planes, leading to promising ionic conductivity in new solid state separators. Finally, in chemical separations, the selective transport of ions becomes important. We examine how manipulating the chemical and electrostatic composition of layered polyelectrolyte materials leads to preferential cation transport through these composite structures, a key property for an effective separations membrane. These different technologies exemplify how the principles governing ion transport through multilayered materials can be adapted for widely varied applications, and they illustrate the potential for this materials development strategy to enable new classes of functional composite materials. Please click Additional Files below to see the full abstract

    Optical Navigation Simulation and Performance Analysis for Osiris-Rex Proximity Operations

    Get PDF
    The OSIRIS-REx mission timeline with OpNav milestones is presented in Figure 1. The first three proximity operations (ProxOps) mission phases focus on Navigation. During these phases, OSIRIS-REx approaches Bennu, conducts equatorial and polar flybys in Preliminary Survey, and inserts into the first mission orbit: Orbit A. During these phases, the OpNav techniques evolve from point-source to resolved-body centroiding to landmark tracking

    Autonomous Detection of Particles and Tracks in Optical Images

    Full text link
    During its initial orbital phase in early 2019, the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission detected small particles apparently emanating from the surface of the near-Earth asteroid (101955) Bennu in optical navigation images. Identification and characterization of the physical and dynamical properties of these objects became a mission priority in terms of both spacecraft safety and scientific investigation. Traditional techniques for particle identification and tracking typically rely on manual inspection and are often time-consuming. The large number of particles associated with the Bennu events and the mission criticality rendered manual inspection techniques infeasible for long-term operational support. In this work, we present techniques for autonomously detecting potential particles in monocular images and providing initial correspondences between observations in sequential images, as implemented for the OSIRIS-REx mission.Comment: 23 pages, 10 figure

    Nanoscale Mobility of the Apo State and TARP Stoichiometry Dictate the Gating Behavior of Alternatively Spliced AMPA Receptors.

    Get PDF
    Neurotransmitter-gated ion channels are allosteric proteins that switch on and off in response to agonist binding. Most studies have focused on the agonist-bound, activated channel while assigning a lesser role to the apo or resting state. Here, we show that nanoscale mobility of resting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (AMPA receptors) predetermines responsiveness to neurotransmitter, allosteric anions and TARP auxiliary subunits. Mobility at rest is regulated by alternative splicing of the flip/flop cassette of the ligand-binding domain, which controls motions in the distant AMPA receptor N-terminal domain (NTD). Flip variants promote moderate NTD movement, which establishes slower channel desensitization and robust regulation by anions and auxiliary subunits. In contrast, greater NTD mobility imparted by the flop cassette acts as a master switch to override allosteric regulation. In AMPA receptor heteromers, TARP stoichiometry further modifies these actions of the flip/flop cassette generating two functionally distinct classes of partially and fully TARPed receptors typical of cerebellar stellate and Purkinje cells
    • …
    corecore