55 research outputs found

    Genome-Wide Analysis of Müller Glial Differentiation Reveals a Requirement for Notch Signaling in Postmitotic Cells to Maintain the Glial Fate

    Get PDF
    Previous studies have shown that Müller glia are closely related to retinal progenitors; these two cell types express many of the same genes and after damage to the retina, Müller glia can serve as a source for new neurons, particularly in non-mammalian vertebrates. We investigated the period of postnatal retinal development when progenitors are differentiating into Müller glia to better understand this transition. FACS purified retinal progenitors and Müller glia from various ages of Hes5-GFP mice were analyzed by Affymetrix cDNA microarrays. We found that genes known to be enriched/expressed by Müller glia steadily increase over the first three postnatal weeks, while genes associated with the mitotic cell cycle are rapidly downregulated from P0 to P7. Interestingly, progenitor genes not directly associated with the mitotic cell cycle, like the proneural genes Ascl1 and Neurog2, decline more slowly over the first 10–14 days of postnatal development, and there is a peak in Notch signaling several days after the presumptive Müller glia have been generated. To confirm that Notch signaling continues in the postmitotic Müller glia, we performed in situ hybridization, immunolocalization for the active form of Notch, and immunofluorescence for BrdU. Using genetic and pharmacological approaches, we found that sustained Notch signaling in the postmitotic Müller glia is necessary for their maturation and the stabilization of the glial identity for almost a week after the cells have exited the mitotic cell cycle

    Variations of the Candidate SEZ6L2 Gene on Chromosome 16p11.2 in Patients with Autism Spectrum Disorders and in Human Populations

    Get PDF
    Background: Autism spectrum disorders (ASD) are a group of severe childhood neurodevelopmental disorders with still unknown etiology. One of the most frequently reported associations is the presence of recurrent de novo or inherited microdeletions and microduplications on chromosome 16p11.2. The analysis of rare variations of 8 candidate genes among the 27 genes located in this region suggested SEZ6L2 as a compelling candidate. Methodology/Principal Findings: We further explored the role of SEZ6L2 variations by screening its coding part in a group of 452 individuals, including 170 patients with ASD and 282 individuals from different ethnic backgrounds of the Human Genome Diversity Panel (HGDP), complementing the previously reported screening. We detected 7 previously unidentified non-synonymous variations of SEZ6L2 in ASD patients. We also identified 6 non-synonymous variations present only in HGDP. When we merged our results with the previously published, no enrichment of non-synonymous variation in SEZ6L2 was observed in the ASD group compared with controls. Conclusions/Significance: Our results provide an extensive ascertainment of the genetic variability of SEZ6L2 in human populations and do not support a major role for SEZ6L2 sequence variations in the susceptibility to ASD

    Ectopic Wnt/Beta–Catenin Signaling Induces Neurogenesis in the Spinal Cord and Hindbrain Floor Plate

    Get PDF
    The most ventral structure of the developing neural tube, the floor plate (FP), differs in neurogenic capacity along the neuraxis. The FP is largely non-neurogenic at the hindbrain and spinal cord levels, but generates large numbers of dopamine (mDA) neurons at the midbrain levels. Wnt1, and other Wnts are expressed in the ventral midbrain, and Wnt/beta catenin signaling can at least in part account for the difference in neurogenic capacity of the FP between midbrain and hindbrain levels. To further develop the hypothesis that canonical Wnt signaling promotes mDA specification and FP neurogenesis, we have generated a model wherein beta–catenin is conditionally stabilized throughout the FP. Here, we unambiguously show by fate mapping FP cells in this mutant, that the hindbrain and spinal cord FP are rendered highly neurogenic, producing large numbers of neurons. We reveal that a neurogenic hindbrain FP results in the altered settling pattern of neighboring precerebellar neuronal clusters. Moreover, in this mutant, mDA progenitor markers are induced throughout the rostrocaudal axis of the hindbrain FP, although TH+ mDA neurons are produced only in the rostral aspect of rhombomere (r)1. This is, at least in part, due to depressed Lmx1b levels by Wnt/beta catenin signaling; indeed, when Lmx1b levels are restored in this mutant, mDA are observed not only in rostral r1, but also at more caudal axial levels in the hindbrain, but not in the spinal cord. Taken together, these data elucidate both patterning and neurogenic functions of Wnt/beta catenin signaling in the FP, and thereby add to our understanding of the molecular logic of mDA specification and neurogenesis

    Hes5 Expression in the Postnatal and Adult Mouse Inner Ear and the Drug-Damaged Cochlea

    Get PDF
    The Notch signaling pathway is known to have multiple roles during development of the inner ear. Notch signaling activates transcription of Hes5, a homologue of Drosophila hairy and enhancer of split, which encodes a basic helix-loop-helix transcriptional repressor. Previous studies have shown that Hes5 is expressed in the cochlea during embryonic development, and loss of Hes5 leads to overproduction of auditory and vestibular hair cells. However, due to technical limitations and inconsistency between previous reports, the precise spatial and temporal pattern of Hes5 expression in the postnatal and adult inner ear has remained unclear. In this study, we use Hes5-GFP transgenic mice and in situ hybridization to report the expression pattern of Hes5 in the inner ear. We find that Hes5 is expressed in the developing auditory epithelium of the cochlea beginning at embryonic day 14.5 (E14.5), becomes restricted to a particular subset of cochlear supporting cells, is downregulated in the postnatal cochlea, and is not present in adults. In the vestibular system, we detect Hes5 in developing supporting cells as early as E12.5 and find that Hes5 expression is maintained in some adult vestibular supporting cells. In order to determine the effect of hair cell damage on Notch signaling in the cochlea, we damaged cochlear hair cells of adult Hes5-GFP mice in vivo using injection of kanamycin and furosemide. Although outer hair cells were killed in treated animals and supporting cells were still present after damage, supporting cells did not upregulate Hes5-GFP in the damaged cochlea. Therefore, absence of Notch-Hes5 signaling in the normal and damaged adult cochlea is correlated with lack of regeneration potential, while its presence in the neonatal cochlea and adult vestibular epithelia is associated with greater capacity for plasticity or regeneration in these tissues; which suggests that this pathway may be involved in regulating regenerative potential

    A Non-Specific Effect Associated with Conditional Transgene Expression Based on Cre-loxP Strategy in Mice

    Get PDF
    Transgenes flanked by loxP sites have been widely used to generate transgenic mice where the transgene expression can be controlled spatially and temporally by Cre recombinase. Data from this approach has led to important conclusions in cancer, neurodevelopment and neurodegeneration. Using this approach to conditionally express micro RNAs (miRNAs) in mice, we found that Cre-mediated recombination in neural progenitor cells caused microcephaly in five of our ten independent transgenic lines. This effect was not associated with the types or the quantity of miRNAs being expressed, nor was it associated with specific target knockdown. Rather, it was correlated with the presence of multiple tandem transgene copies and inverted (head-to-head or tail-to-tail) transgene repeats. The presence of these inverted repeats caused a high level of cell death in the ventricular zone of the embryonic brain, where Cre was expressed. Therefore, results from this Cre-loxP approach to generate inducible transgenic alleles must be interpreted with caution and conclusions drawn in previous reports may need reexamination

    Blunted Neuronal Calcium Response to Hypoxia in Naked Mole-Rat Hippocampus

    Get PDF
    Naked mole-rats are highly social and strictly subterranean rodents that live in large communal colonies in sealed and chronically oxygen-depleted burrows. Brain slices from naked mole-rats show extreme tolerance to hypoxia compared to slices from other mammals, as indicated by maintenance of synaptic transmission under more hypoxic conditions and three fold longer latency to anoxic depolarization. A key factor in determining whether or not the cellular response to hypoxia is reversible or leads to cell death may be the elevation of intracellular calcium concentration. In the present study, we used fluorescent imaging techniques to measure relative intracellular calcium changes in CA1 pyramidal cells of hippocampal slices during hypoxia. We found that calcium accumulation during hypoxia was significantly and substantially attenuated in slices from naked mole-rats compared to slices from laboratory mice. This was the case for both neonatal (postnatal day 6) and older (postnatal day 20) age groups. Furthermore, while both species demonstrated more calcium accumulation at older ages, the older naked mole-rats showed a smaller calcium accumulation response than even the younger mice. A blunted intracellular calcium response to hypoxia may contribute to the extreme hypoxia tolerance of naked mole-rat neurons. The results are discussed in terms of a general hypothesis that a very prolonged or arrested developmental process may allow adult naked mole-rat brain to retain the hypoxia tolerance normally only seen in neonatal mammals

    Ontogenetic De Novo Copy Number Variations (CNVs) as a Source of Genetic Individuality: Studies on Two Families with MZD Twins for Schizophrenia

    Get PDF
    Genetic individuality is the foundation of personalized medicine, yet its determinants are currently poorly understood. One issue is the difference between monozygotic twins that are assumed identical and have been extensively used in genetic studies for decades [1]. Here, we report genome-wide alterations in two nuclear families each with a pair of monozygotic twins discordant for schizophrenia evaluated by the Affymetrix 6.0 human SNP array. The data analysis includes characterization of copy number variations (CNVs) and single nucleotide polymorphism (SNPs). The results have identified genomic differences between twin pairs and a set of new provisional schizophrenia genes. Samples were found to have between 35 and 65 CNVs per individual. The majority of CNVs (∼80%) represented gains. In addition, ∼10% of the CNVs were de novo (not present in parents), of these, 30% arose during parental meiosis and 70% arose during developmental mitosis. We also observed SNPs in the twins that were absent from both parents. These constituted 0.12% of all SNPs seen in the twins. In 65% of cases these SNPs arose during meiosis compared to 35% during mitosis. The developmental mitotic origin of most CNVs that may lead to MZ twin discordance may also cause tissue differences within individuals during a single pregnancy and generate a high frequency of mosaics in the population. The results argue for enduring genome-wide changes during cellular transmission, often ignored in most genetic analyses

    Thermodynamic Selection of Steric Zipper Patterns in the Amyloid Cross-β Spine

    Get PDF
    At the core of amyloid fibrils is the cross-β spine, a long tape of β-sheets formed by the constituent proteins. Recent high-resolution x-ray studies show that the unit of this filamentous structure is a β-sheet bilayer with side chains within the bilayer forming a tightly interdigitating “steric zipper” interface. However, for a given peptide, different bilayer patterns are possible, and no quantitative explanation exists regarding which pattern is selected or under what condition there can be more than one pattern observed, exhibiting molecular polymorphism. We address the structural selection mechanism by performing molecular dynamics simulations to calculate the free energy of incorporating a peptide monomer into a β-sheet bilayer. We test filaments formed by several types of peptides including GNNQQNY, NNQQ, VEALYL, KLVFFAE and STVIIE, and find that the patterns with the lowest binding free energy correspond to available atomistic structures with high accuracy. Molecular polymorphism, as exhibited by NNQQ, is likely because there are more than one most stable structures whose binding free energies differ by less than the thermal energy. Detailed analysis of individual energy terms reveals that these short peptides are not strained nor do they lose much conformational entropy upon incorporating into a β-sheet bilayer. The selection of a bilayer pattern is determined mainly by the van der Waals and hydrophobic forces as a quantitative measure of shape complementarity among side chains between the β-sheets. The requirement for self-complementary steric zipper formation supports that amyloid fibrils form more easily among similar or same sequences, and it also makes parallel β-sheets generally preferred over anti-parallel ones. But the presence of charged side chains appears to kinetically drive anti-parallel β-sheets to form at early stages of assembly, after which the bilayer formation is likely driven by energetics

    RET PLCγ Phosphotyrosine Binding Domain Regulates Ca2+ Signaling and Neocortical Neuronal Migration

    Get PDF
    The receptor tyrosine kinase RET plays an essential role during embryogenesis in regulating cell proliferation, differentiation, and migration. Upon glial cell line-derived neurotrophic factor (GDNF) stimulation, RET can trigger multiple intracellular signaling pathways that in concert activate various downstream effectors. Here we report that the RET receptor induces calcium (Ca2+) signaling and regulates neocortical neuronal progenitor migration through the Phospholipase-C gamma (PLCγ) binding domain Tyr1015. This signaling cascade releases Ca2+ from the endoplasmic reticulum through the inositol 1,4,5-trisphosphate receptor and stimulates phosphorylation of ERK1/2 and CaMKII. A point mutation at Tyr1015 on RET or small interfering RNA gene silencing of PLCγ block the GDNF-induced signaling cascade. Delivery of the RET mutation to neuronal progenitors in the embryonic ventricular zone using in utero electroporation reveal that Tyr1015 is necessary for GDNF-stimulated migration of neurons to the cortical plate. These findings demonstrate a novel RET mediated signaling pathway that elevates cytosolic Ca2+ and modulates neuronal migration in the developing neocortex through the PLCγ binding domain Tyr1015
    corecore