325 research outputs found
Low-temperature structural model of hcp solid C
We report intermolecular potential-energy calculations for solid C_ and
determine the optimum static orientations of the molecules at low temperature;
we find them to be consistent with the monoclinic structural model proposed by
us in an earlier report [Solid State Commun. {\bf 105), 247 (1998)]. This model
indicates that the C_5 axis of the molecule is tilted by an angle 18^o
from the monoclinic b axis in contrast with the molecular orientation proposed
by Verheijen {\it et al.} [J. Chem. Phys. {\bf 166}, 287 (1992)] where the C_5
axis is parallel to the monoclinic b axis. In this calculation we have
incorporated the effective bond charge Coulomb potential together with the
Lennard-Jones potential between the molecule at the origin of the monoclinic
unit cell and its six nearest neighbours, three above and three below. The
minimum energy configuration for the molecular orientations turns out to be at
=18^o, =8^o, and =5^o, where , , and
define the molecular orientations.Comment: ReVTeX (4 pages) + 2 PostScript figure
A clinical-radiological framework of the right temporal variant of frontotemporal dementia
The concept of the right temporal variant of frontotemporal dementia (rtvFTD) is still equivocal. The syndrome accompanying predominant right anterior temporal atrophy has previously been described as memory loss, prosopagnosia, getting lost and behavioural changes. Accurate detection is challenging, as the clinical syndrome might be confused with either behavioural variant FTD (bvFTD) or Alzheimerβs disease. Furthermore, based on neuroimaging features, the syndrome has been considered a right-sided variant of semantic variant primary progressive aphasia (svPPA). Therefore, we aimed to demarcate the clinical and neuropsychological characteristics of rtvFTD versus svPPA, bvFTD and Alzheimerβs disease. Moreover, we aimed to compare its neuroimaging profile against svPPA, which is associated with predominant left anterior temporal atrophy. Of 619 subjects with a clinical diagnosis of frontotemporal dementia or primary progressive aphasia, we included 70 subjects with a negative amyloid status in whom predominant right temporal lobar atrophy was identified based on blinded visual assessment of their initial brain MRI scans. Clinical symptoms were assessed retrospectively and compared with age- and sex-matched patients with svPPA (nβ=β70), bvFTD (nβ=β70) and Alzheimerβs disease (nβ=β70). Prosopagnosia, episodic memory impairment and behavioural changes such as disinhibition, apathy, compulsiveness and loss of empathy were the most common initial symptoms, whereas during the disease course, patients developed language problems such as word-finding difficulties and anomia. Distinctive symptoms of rtvFTD compared to the other groups included depression, somatic complaints, and motor/mental slowness. Aside from right temporal atrophy, the imaging pattern showed volume loss of the right ventral frontal area and the left temporal lobe, which represented a close mirror image of svPPA. Atrophy of the bilateral temporal poles and the fusiform gyrus were associated with prosopagnosia in rtvFTD. Our results highlight that rtvFTD has a unique clinical presentation. Since current diagnostic criteria do not cover specific symptoms of the rtvFTD, we propose a diagnostic tree to be used to define diagnostic criteria and call for an international validation
1H and 13C resonance assignments of a guanine sensing riboswitchβs terminator hairpin
Here we report the nearly complete base assignments and partial sugar assignments of the 35-residue terminator hairpin of the Bacillus subtilisxpt-pbuX-mRNA guanine sensing riboswitch
Multiple segmental and selective isotope labeling of large RNA for NMR structural studies
Multiple segmental and selective isotope labeling of RNA with three segments has been demonstrated by introducing an RNA segment, selectively labeled with 13C9/15N2/2H(1β², 3β², 4β², 5β², 5β²β²)-labeled uridine residues, into the central position of the 20 kDa Ξ΅-RNA of Duck Hepatitis B Virus. The RNA molecules were produced via two efficient protocols: a two-step protocol, which uses T4 DNA ligase and T4 RNA ligase 1, and a one-pot protocol, which uses T4 RNA ligase 1 alone. With T4 RNA ligase 1 all not-to-be-ligated termini are usually protected to prevent formation of side products. We show that such labor-intensive protection of termini is not required, provided segmentation sites can be chosen such that the segments fold into the target structure or target-like structures and thus are not trapped into stable alternate structures. These sites can be reliably predicted via DINAMelt. The simplified NMR spectrum provided evidence for the presence of a U28 H3-imino resonance, previously obscured in the fully labeled sample, and thus of the non-canonical base pair U28:C37. The demonstrated multiple segmental labeling protocols are generally applicable to large RNA molecules and can be extended to more than three segments
Second-look PET-CT following an initial incomplete PET-CT response to (chemo)radiotherapy for head and neck squamous cell carcinoma
OBJECTIVES:
The limited positive predictive value of an incomplete response on PET-CT following (chemo)radiotherapy for head and neck squamous cell carcinoma (HNSCC) means that the optimal management strategy remains uncertain. The aim of the study is to assess the utility of a 'second-look' interval PET-CT.
METHODS:
Patients with HNSCC who were treated with (chemo)radiotherapy between 2008 and 2017 and underwent (i) baseline and (ii) response assessment PET-CT and (iii) second-look PET-CT following incomplete (positive or equivocal scan) response were included. Endpoints were conversion rate to complete response (CR) and test characteristics of the second-look PET-CT.
RESULTS:
Five hundred sixty-two patients with HNSCC underwent response assessment PET-CT at a median of 17Β weeks post-radiotherapy. Following an incomplete response on PET-CT, 40 patients underwent a second-look PET-CT at a median of 13Β weeks (range 6-25) from the first response PET-CT. Thirty-four out of 40 (85%) patients had oropharyngeal carcinoma. Twenty-four out of 40 (60%) second-look PET-CT scans converted to a complete locoregional response. The primary tumour conversion rate was 15/27 (56%) and the lymph node conversion rate was 14/19 (74%). The sensitivity, specificity, positive predictive value and negative predictive value (NPV) of the second-look PET-CT were 75%, 75%, 25% and 96% for the primary tumour and 100%, 92%, 40% and 100% for lymph nodes. There were no cases of progression following conversion to CR in the primary site or lymph nodes.
CONCLUSIONS:
The majority of patients who undergo a second-look PET-CT convert to a CR. The NPV of a second-look PET-CT is high, suggesting the potential to avoid surgical intervention.
KEY POINTS:
β’ PET-CT is a useful tool for response assessment following (chemo)radiotherapy for head and neck squamous cell carcinoma. β’ An incomplete response on PET-CT has a limited positive predictive value and optimal management is uncertain.
β’ These data show that with a 'second-look' interval PET-CT, the majority of patients convert to a complete metabolic response. When there is doubt about clinical and radiological response, a 'second-look' PET-CT can be used to spare patients unnecessary surgical intervention
Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP
Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/Bβ. Results also show that unstructured post- ranslationally modified C-terminal tails are
responsible for the dynamics of Sm-B/Bβ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)
Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions
Impaired flow-induced arterial remodeling in DOCA-salt hypertensive rats
Arteries from young healthy animals respond to chronic changes in blood flow and blood pressure by structural remodeling. We tested whether the ability to respond to decreased (-90%) or increased (+100%) blood flow is impaired during the development of deoxycorticosterone acetate (DOCA)-salt hypertension in rats, a model for an upregulated endothelin-1 system. Mesenteric small arteries (MrA) were exposed to low blood flow (LF) or high blood flow (HF) for 4 or 7 weeks. The bioavailability of vasoactive peptides was modified by chronic treatment of the rats with the dual neutral endopeptidase (NEP)/endothelin-converting enzyme (ECE) inhibitor SOL1. After 3 or 6 weeks of hypertension, the MrA showed hypertrophic arterial remodeling (3 weeks: media cross-sectional area (mCSA): 10 +/- 1 x 10(3) to 17 +/- 2 x 10(3) mu m(2); 6 weeks: 13 +/- 2 x 10(3) to 24 +/- 3 x 10(3) mu m(2)). After 3, but not 6, weeks of hypertension, the arterial diameter was increased (empty set: 385 +/- 13 to 463 +/- 14 mu m). SOL1 reduced hypertrophy after 3 weeks of hypertension (mCSA: 6 x 10(3) +/- 1 x 10(3) mu m(2)). The diameter of the HF arteries of normotensive rats increased (empty set: 463 +/- 22 mu m) but no expansion occurred in the HF arteries of hypertensive rats (empty set: 471 +/- 16 mu m). MrA from SOL1-treated hypertensive rats did show a significant diameter increase (empty set: 419 +/- 13 to 475 +/- 16 mu m). Arteries exposed to LF showed inward remodeling in normotensive and hypertensive rats (mean empty set between 235 and 290 mu m), and infiltration of monocyte/ macrophages. SOL1 treatment did not affect the arterial diameter of LF arteries but reduced the infiltration of monocyte/ macrophages. We show for the first time that flow-induced remodeling is impaired during the development of DOCA-salt hypertension and that this can be prevented by chronic NEP/ECE inhibition. Hypertension Research (2012) 35, 1093-1101; doi:10.1038/hr.2012.94; published online 12 July 201
A computed tomography based study on rotational alignment accuracy of the femoral component in total knee arthroplasty using computer-assisted orthopaedic surgery
Rotation of the femoral component in total knee arthroplasty (TKA) is of high importance in respect of the balancing of the knee and the patellofemoral joint. Though it is shown that computer assisted surgery (CAOS) improves the anteroposterior (AP) alignment in TKA, it is still unknown whether navigation helps in finding the accurate rotation or even improving rotation. Therefore the aim of our study was to evaluate the postoperative femoral component rotation on computed tomography (CT) with the intraoperative data of the navigation system. In 20 navigated TKAs the difference between the intraoperative stored rotation data of the femoral component and the postoperative rotation on CT was measured using the condylar twist angle (CTA). This is the angle between the epicondylar axis and the posterior condylar axis. Statistical analysis consisted of the intraclass correlation coefficient (ICC) and Bland-Altman plot. The mean intraoperative rotation CTA based on CAOS was 3.5Β° (range 2.4β8.6Β°). The postoperative CT scan showed a mean CTA of 4.0Β° (1.7β7.2). The ICC between the two observers was 0.81, and within observers this was 0.84 and 0.82, respectively. However, the ICC of the CAOS CTA versus the postoperative CT CTA was only 0.38. Though CAOS is being used for optimising the position of a TKA, this study shows that the (virtual) individual rotational position of the femoral component using a CAOS system is significantly different from the position on a postoperative CT scan
- β¦