351 research outputs found

    Recent updates on incubation of drug craving: a mini-review

    Get PDF
    Cue-induced drug craving progressively increases after prolonged withdrawal from drug self-administration in laboratory animals, a behavioral phenomenon termed 'incubation of drug craving.' Studies over the years have revealed several important neural mechanisms contributing to incubation of drug craving. In this mini-review, we first discuss three excellent Addiction Biology publications on incubation of drug craving in both human and laboratory animals. We then review several key publications from the past year on behavioral and mechanistic findings related to incubation of drug craving

    Epigenetics and Drug Abuse

    Get PDF
    Gene expression and inheritance are not only a function of the DNA code, but also epigenetic mechanisms that regulate DNA accessibility, transcription, and translation of the genetic code into a functional protein. Epigenetic mechanisms are invoked by life experiences, including stress and exposure to drugs of abuse, and the resulting changes in gene expression can be inherited by future generations. This chapter highlights recent research demonstrating epigenetic changes in response to drug exposure with a focus on three different mechanisms: DNA methylation, histone modification, and noncoding RNAs. We briefly describe each of these mechanisms and then provide key examples of drug-induced changes involving these mechanisms, as well as epigenetic manipulations that alter effects of drugs. We then review cutting-edge technologies, including viral-mediated gene transfer and gene editing, that are being used to manipulate epigenetic processes with temporal and cell-type specificity. We also describe and provide examples of intergenerational epigenetic modifications, a topic that has interesting implications for how addiction-related traits may be passed down across generations. Finally, we discuss how this research provides a greater understanding of drug addiction and may lead to novel molecular targets for preventions and interventions for drug abuse

    New technologies for examining neuronal ensembles in drug addiction and fear

    Get PDF
    Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. Additionally, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches—Daun02 inactivation, FACS sorting of activated neurons and c-fos-GFP transgenic rats — that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools — c-fos-tTA mice and inactivation of CREB-overexpressing neurons — that have been used to study the role of neuronal ensembles in conditioned fear

    Nicotinic receptors

    Get PDF
    Regulation of normal or abnormal behaviour is critically controlled by the central serotonergic systems. Recent evidence has suggested that serotonin (5-HT) neurotransmission dysfunction contributes to a variety of pathological conditions, including depression, anxiety, schizophrenia and Parkinson’s disorders. There is also a great amount of evidence indicating that 5-HT signalling may affect the reinforcing properties of drugs of abuse by the interaction and modulation of dopamine (DA) function. This chapter is focused on one of the more addictive drugs, nicotine. It is widely recognised that the effects of nicotine are strongly associated with the stimulatory action it exhibits on mesolimbic DAergic function. We outline the role of 5-HT and its plethora of receptors, focusing on 5-HT2 subtypes with relation to their involvement in the neurobiology of nicotine addiction. We also explore the novel pharmacological approaches using 5-HT agents for the treatment of nicotine dependence. Compelling evidence shows that 5-HT2C receptor agonists may be possible therapeutic targets for smoking cessation, although further investigation is required.peer-reviewe

    HIV gp120 impairs nucleus accumbens neuroimmune function and dopamine D3 receptor-mediated inhibition of cocaine seeking in male rats

    Full text link
    Cocaine Use Disorders (CUDs) are associated with an increased risk of human immunodeficiency virus (HIV) infection. Cocaine and the HIV envelope protein gp120 each induce distinct deficits to mesocorticolimbic circuit function and motivated behavior; however, little is known regarding how they interact to dysregulate these functions or how such interactions impact pharmacotherapeutic efficacy. We have previously shown that the selective, weak partial agonist of the dopamine D3 receptor (D3R), MC-25-41, attenuates cocaine-seeking behavior in male rats. Here, we sought to characterize changes in striatal neuroimmune function in gp120-exposed rats across abstinence from operant access to cocaine (0.75 mg/kg, i.v.) or sucrose (45 mg/pellet), and to examine the impact of gp120 exposure on MC-25-41-reduced cocaine seeking. After establishing a history of cocaine or sucrose self-administration, rats received intracerebroventricular gp120 infusions daily the first 5 days of abstinence and were sacrificed either on day 6 or after 21 days of forced abstinence and a cue-induced cocaine seeking test. We demonstrated that MC-25-41 treatment attenuated cue-induced cocaine seeking among control rats but not gp120-exposed rats. Moreover, postmortem analysis of nucleus accumbens (NAc) core neuroimmune function indicated cocaine abstinence- and gp120-induced impairments, and the expression of several immune factors within the NAc core significantly correlated with cocaine-seeking behavior. We conclude that cocaine abstinence dysregulates striatal neuroimmune function and interacts with gp120 to inhibit the effectiveness of a D3R partial agonist in reducing cocaine seeking. These findings highlight the need to consider comorbidities, such as immune status, when evaluating the efficacy of novel pharmacotherapeutics.Temple University. School of PharmacyPharmaceutical Science

    Changing the General Factor of Personality and the c-fos Gene Expression with Methylphenidate and Self-Regulation Therapy

    Full text link
    [EN] A deepening in the biological nature of the general factor of personality (GFP) is suggested: the activation level of the stress system is here represented by the gene expression of c-fos. The results of a single case experimental design are reported. A model of four coupled differential equations that explains the human personality dynamics as a consequence of a single stimulant drug intake has been fitted to psychological and biological experimental data. The stimulant-drug conditioning and its adaptation to the considered mathematical model is also studied for both kinds of measures. The dynamics of the cfos expression presents a similar pattern to the dynamics of the psychological measures of personality assessed by the GFP-FAS (Five-Adjective Scale of the General Factor of Personality) as a consequence of a single dose of stimulant drug (methylphenidate). The model predicts similar dynamic patterns for both psychological and biological measures. This study proves that describing mathematically the dynamics of the effects of a stimulant drug as well as the effects of a conditioning method on psychological or subjective variables and on gene expression is possible. It verifies the existence of biological mechanisms underlying the dynamics of the General Factor of Personality (GFP).[ES] Este artículo estudia la naturaleza dinámica del Factor General de Personalidad (FGP) en respuesta a una dosis única de metilfenidato a partir de un diseño experimental de caso único con replicación. Para medir el FGP, se emplean tanto medidas psicológicas (Escala de Cinco Adjetivos del Factor General de Personalidad; ECA-FGP), como un marcador biológico (propuesto como substrato biológico del FGP) que es la concentración del gen c-fos en los linfocitos de la sangre. También se estudia el condicionamiento de los efectos subjetivo y biológico del metilfenidato con una técnica de sugestión y condicionamiento, denominada terapia de auto-regulación. Por último, se propone un modelo matemático de cuatro ecuaciones diferenciales acopladas que explican la dinámica del FGP como consecuencia de una ingestión de droga estimulante y del condicionamiento de la droga, ajustadas a los datos experimentales psicológicos y biológicos. Los resultados muestran un patrón dinámico similar para ambas medidas psicológicas y biológicas del FGP en respuesta tanto a una dosis de metilfenidato como al condicionamiento con terapia de auto-regulación.Así, se evidencia que es posible la formulación matemática de la dinámica del FGP y sus correlatos biológicos, como el gen regulador c-fos, y su condicionamiento mediante la terapia de auto-regulación.Micó Ruiz, JC.; Amigó Borrás, S.; Caselles Moncho, A. (2012). Changing the General Factor of Personality and the c-fos Gene Expression with Methylphenidate and Self-Regulation Therapy. Spanish Journal of Psychology. 15(2):850-867. doi:10.5209/rev_SJOP.2012.v15.n2.38896S850867152Volkow, N. D., Wang, G.-J., Fowler, J. S., Logan, J., Gerasimov, M., Maynard, L., … Franceschi, D. (2001). Therapeutic Doses of Oral Methylphenidate Significantly Increase Extracellular Dopamine in the Human Brain. The Journal of Neuroscience, 21(2), RC121-RC121. doi:10.1523/jneurosci.21-02-j0001.2001Rushton, J. P., & Irwing, P. (2009). A General Factor of Personality (GFP) from the Multidimensional Personality Questionnaire. Personality and Individual Differences, 47(6), 571-576. doi:10.1016/j.paid.2009.05.011Berke, J. D., Paletzki, R. F., Aronson, G. J., Hyman, S. E., & Gerfen, C. R. (1998). A Complex Program of Striatal Gene Expression Induced by Dopaminergic Stimulation. The Journal of Neuroscience, 18(14), 5301-5310. doi:10.1523/jneurosci.18-14-05301.1998Veselka, L., Schermer, J. A., Petrides, K. V., Cherkas, L. F., Spector, T. D., & Vernon, P. A. (2009). A General Factor of Personality: Evidence from the HEXACO Model and a Measure of Trait Emotional Intelligence. Twin Research and Human Genetics, 12(5), 420-424. doi:10.1375/twin.12.5.420Platt, J. (1995). C-fos expression in vivo in human lymphocytes in response to stress. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 19(1), 65-74. doi:10.1016/0278-5846(94)00105-qSchweri, M. M., Skolnick, P., Rafferty, M. F., Rice, K. C., Janowsky, A. J., & Paul, S. M. (1985). [3H]Threo-(±)-Methylphenidate Binding to 3,4-Dihydroxyphenylethylamine Uptake Sites in Corpus Striatum: Correlation with the Stimulant Properties of Ritalinic Acid Esters. Journal of Neurochemistry, 45(4), 1062-1070. doi:10.1111/j.1471-4159.1985.tb05524.xCaselles, A., Micó, J. C., & Amigó, S. (2011). Dynamics of the General Factor of Personality in Response to a Single Dose of Caffeine. The Spanish journal of psychology, 14(2), 675-692. doi:10.5209/rev_sjop.2011.v14.n2.16Grossberg, S. (2000). The imbalanced brain: from normal behavior to schizophrenia. Biological Psychiatry, 48(2), 81-98. doi:10.1016/s0006-3223(00)00903-3Brandon, C. L., & Steiner, H. (2003). Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. European Journal of Neuroscience, 18(6), 1584-1592. doi:10.1046/j.1460-9568.2003.02892.xMorgan, J. I., & Curran, T. (1991). Stimulus-Transcription Coupling in the Nervous System: Involvement of the Inducible Proto-Oncogenes fos and jun. Annual Review of Neuroscience, 14(1), 421-451. doi:10.1146/annurev.ne.14.030191.002225LYNCH, J. J., STEIN, E. A., & FERTZIGER, A. P. (1976). AN ANALYSIS OF 70 YEARS OF MORPHINE CLASSICAL CONDITIONING. The Journal of Nervous and Mental Disease, 163(1), 47-58. doi:10.1097/00005053-197607000-00007Guzowski, J. F., Setlow, B., Wagner, E. K., & McGaugh, J. L. (2001). Experience-Dependent Gene Expression in the Rat Hippocampus after Spatial Learning: A Comparison of the Immediate-Early GenesArc, c-fos, andzif268. The Journal of Neuroscience, 21(14), 5089-5098. doi:10.1523/jneurosci.21-14-05089.2001Caselles, A., Micó, J. C., & Amigó, S. (2010). Cocaine addiction and personality: A mathematical model. British Journal of Mathematical and Statistical Psychology, 63(2), 449-480. doi:10.1348/000711009x470768Rushton, J. P., & Irwing, P. (2009). A general factor of personality in the Comrey Personality Scales, the Minnesota Multiphasic Personality Inventory-2, and the Multicultural Personality Questionnaire. Personality and Individual Differences, 46(4), 437-442. doi:10.1016/j.paid.2008.11.015O’BRIEN, C. P., CHILDRESS, A. R., McLELLAN, A. T., & EHRMAN, R. (1992). Classical Conditioning in Drug-Dependent Humans. Annals of the New York Academy of Sciences, 654(1 The Neurobiol), 400-415. doi:10.1111/j.1749-6632.1992.tb25984.xHurd, Y. L., & Ungerstedt, U. (1989). In vivo neurochemical profile of dopamine uptake inhibitors and releasers in rat caudate-putamen. European Journal of Pharmacology, 166(2), 251-260. doi:10.1016/0014-2999(89)90066-6Rushton, J. P., Bons, T. A., & Hur, Y.-M. (2008). The genetics and evolution of the general factor of personality. Journal of Research in Personality, 42(5), 1173-1185. doi:10.1016/j.jrp.2008.03.002Yano, M., & Steiner, H. (2004). Topography of Methylphenidate (Ritalin)-Induced Gene Regulation in the Striatum: Differential Effects on c-Fos, Substance P and Opioid Peptides. Neuropsychopharmacology, 30(5), 901-915. doi:10.1038/sj.npp.1300613Amigó, S., Caselles, A., & Micó, J. C. (2010). General Factor of Personality Questionnaire (GFPQ): Only one Factor to Understand Personality? The Spanish journal of psychology, 13(1), 5-17. doi:10.1017/s1138741600003644Erdle, S., Irwing, P., Rushton, J. P., & Park, J. (2010). The General Factor of Personality and its relation to Self-Esteem in 628,640 Internet respondents. Personality and Individual Differences, 48(3), 343-346. doi:10.1016/j.paid.2009.09.004Bogaert, A. F., & Philippe Rushton, J. (1989). Sexuality, delinquency and r/K reproductive strategies: Data from a Canadian University sample. Personality and Individual Differences, 10(10), 1071-1077. doi:10.1016/0191-8869(89)90259-6Figueredo, A. J., & Rushton, J. P. (2009). Evidence for Shared Genetic Dominance Between the General Factor of Personality, Mental and Physical Health, and Life History Traits. Twin Research and Human Genetics, 12(6), 555-563. doi:10.1375/twin.12.6.555Bertaina-Anglade, V., Tramu, G., & Destrade, C. (2000). Differential learning-stage dependent patterns of c-Fos protein expression in brain regions during the acquisition and memory consolidation of an operant task in mice. European Journal of Neuroscience, 12(10), 3803-3812. doi:10.1046/j.1460-9568.2000.00258.xLin, T. N., Te, J., Huang, H. C., Chi, S. I., & Hsu, C. Y. (1997). Prolongation and Enhancement of Postischemic c- fos Expression After Fasting. Stroke, 28(2), 412-418. doi:10.1161/01.str.28.2.412Kuczenski, R., & Segal, D. S. (2002). Effects of Methylphenidate on Extracellular Dopamine, Serotonin, and Norepinephrine: Comparison with Amphetamine. Journal of Neurochemistry, 68(5), 2032-2037. doi:10.1046/j.1471-4159.1997.68052032.xHarris, J. A. (1998). Using c-fos as a Neural Marker of Pain. Brain Research Bulletin, 45(1), 1-8. doi:10.1016/s0361-9230(97)00277-3Penner, M. R., McFadyen, M. P., Pinaud, R., Carrey, N., Robertson, H. A., & Brown, R. E. (2002). Age-related distribution of c-fos expression in the striatum of CD-1 mice after acute methylphenidate administration. Developmental Brain Research, 135(1-2), 71-77. doi:10.1016/s0165-3806(02)00308-5Musek, J. (2007). A general factor of personality: Evidence for the Big One in the five-factor model. Journal of Research in Personality, 41(6), 1213-1233. doi:10.1016/j.jrp.2007.02.003Veselka, L., Schermer, J. A., Petrides, K. V., & Vernon, P. A. (2009). Evidence for a Heritable General Factor of Personality in Two Studies. Twin Research and Human Genetics, 12(3), 254-260. doi:10.1375/twin.12.3.254Harlan, R. E., & Garcia, M. M. (1998). Drugs of abuse and immediate-early genes in the forebrain. Molecular Neurobiology, 16(3), 221-267. doi:10.1007/bf02741385LEVITE, M. (2006). Nerve-Driven Immunity: The Direct Effects of Neurotransmitters on T-Cell Function. Annals of the New York Academy of Sciences, 917(1), 307-321. doi:10.1111/j.1749-6632.2000.tb05397.xKogure, K., & Kato, H. (1993). Altered gene expression in cerebral ischemia. Stroke, 24(12), 2121-2127. doi:10.1161/01.str.24.12.2121Amigó, S., Caselles, A., & Micó, J. C. (2008). A dynamic extraversion model. The brain’s response to a single dose of a stimulant drug. British Journal of Mathematical and Statistical Psychology, 61(1), 211-231. doi:10.1348/000711007x185514Hess, U., Lynch, G., & Gall, C. (1995). Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well-learned discrimination. The Journal of Neuroscience, 15(12), 7796-7809. doi:10.1523/jneurosci.15-12-07796.1995Solomon, R. L., & Corbit, J. D. (1974). An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review, 81(2), 119-145. doi:10.1037/h0036128Schermer, J. A., & Vernon, P. A. (2010). The correlation between general intelligence (g), a general factor of personality (GFP), and social desirability. Personality and Individual Differences, 48(2), 187-189. doi:10.1016/j.paid.2009.10.003Akins, P. T., Liu, P. K., & Hsu, C. Y. (1996). Immediate Early Gene Expression in Response to Cerebral Ischemia. Stroke, 27(9), 1682-1687. doi:10.1161/01.str.27.9.1682Butcher, S. P., Liptrot, J., & Aburthnott, G. W. (1991). Characterisation of methylphenidate and nomifensine induced dopamine release in rat striatum using in vivo brain microdialysis. Neuroscience Letters, 122(2), 245-248. doi:10.1016/0304-3940(91)90869-uPompeiano, M., Cirelli, C., Arrighi, P., & Tononi, G. (1995). c-Fos expression during wakefulness and sleep. Neurophysiologie Clinique/Clinical Neurophysiology, 25(6), 329-341. doi:10.1016/0987-7053(96)84906-9Neisewander, J. L., Baker, D. A., Fuchs, R. A., Tran-Nguyen, L. T. L., Palmer, A., & Marshall, J. F. (2000). Fos Protein Expression and Cocaine-Seeking Behavior in Rats after Exposure to a Cocaine Self-Administration Environment. The Journal of Neuroscience, 20(2), 798-805. doi:10.1523/jneurosci.20-02-00798.2000Rushton, J. P., Bons, T. A., Ando, J., Hur, Y.-M., Irwing, P., Vernon, P. A., … Barbaranelli, C. (2009). A General Factor of Personality From Multitrait–Multimethod Data and Cross–National Twins. Twin Research and Human Genetics, 12(4), 356-365. doi:10.1375/twin.12.4.356Philippe Rushton, J., & Irwing, P. (2009). A General Factor of Personality in the Millon Clinical Multiaxial Inventory-III, the Dimensional Assessment of Personality Pathology, and the Personality Assessment Inventory. Journal of Research in Personality, 43(6), 1091-1095. doi:10.1016/j.jrp.2009.06.002Torres, G., & Horowitz, J. M. (1999). Drugs of Abuse and Brain Gene Expression. Psychosomatic Medicine, 61(5), 630-650. doi:10.1097/00006842-199909000-00007Brown, E., Robertson, G., & Fibiger, H. (1992). Evidence for conditional neuronal activation following exposure to a cocaine-paired environment: role of forebrain limbic structures. The Journal of Neuroscience, 12(10), 4112-4121. doi:10.1523/jneurosci.12-10-04112.1992Gatley, S. J., Pan, D., Chen, R., Chaturvedi, G., & Ding, Y.-S. (1996). Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Sciences, 58(12), PL231-PL239. doi:10.1016/0024-3205(96)00052-5Montag-Sallaz, M., Welzl, H., Kuhl, D., Montag, D., & Schachner, M. (1999). Novelty-induced increased expression of immediate-early genes c-fos and arg 3.1 in the mouse brain. Journal of Neurobiology, 38(2), 234-246. doi:10.1002/(sici)1097-4695(19990205)38:23.0.co;2-gØgard, C., Bratholm, P., Kristensen, L. Ø., Almdal, T., & Christensen, N. (2000). Lymphocyte glucocorticoid receptor mRNA correlates negatively to serum leptin in normal weight subjects. International Journal of Obesity, 24(7), 915-919. doi:10.1038/sj.ijo.0801252Rushton, J. P., & Irwing, P. (2009). A General Factor of Personality in 16 sets of the Big Five, the Guilford–Zimmerman Temperament Survey, the California Psychological Inventory, and the Temperament and Character Inventory. Personality and Individual Differences, 47(6), 558-564. doi:10.1016/j.paid.2009.05.009Henry, B., Sumner, B. E. H., Cruise, L. A., Slattery, D. A., Hill, D. R., & Shahid, M. (2004). Testing the validity of c-fos expression profiling to aid the therapeutic classification of psychoactive drugs. Psychopharmacology, 171(3), 306-321. doi:10.1007/s00213-003-1579-7Chase, T. D., Brown, R. E., Carrey, N., & Wilkinson, M. (2003). Daily methylphenidate administration attenuates c-fos expression in the striatum of prepubertal rats. NeuroReport, 14(5), 769-772. doi:10.1097/00001756-200304150-00022Rushton, J. P., & Irwing, P. (2008). A General Factor of Personality (GFP) from two meta-analyses of the Big Five: and. Personality and Individual Differences, 45(7), 679-683. doi:10.1016/j.paid.2008.07.015FIGUEREDO, A., VASQUEZ, G., BRUMBACH, B., SCHNEIDER, S., SEFCEK, J., TAL, I., … JACOBS, W. (2006). Consilience and Life History Theory: From genes to brain to reproductive strategy. Developmental Review, 26(2), 243-275. doi:10.1016/j.dr.2006.02.002Stewart, J., de Wit, H., & Eikelboom, R. (1984). Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychological Review, 91(2), 251-268. doi:10.1037/0033-295x.91.2.25

    Self-Regulation Therapy to Reproduce Drug Effects: A Suggestion Technique to Change Personality and the DRD3 Gene Expression

    Full text link
    This study proposes a strategy, based on self-regulation therapy, to change personality and its biological substrate, the DRD3 gene expression. It has been demonstrated that acute doses of stimulating drugs, like methylphenidate, are able to change personality and the expression of certain genes in the short term. On the other hand, self-regulation therapy has been proven to reproduce the effects of drugs. Thus, it is feasible to hope that self-regulation therapy is equally effective as methylphenidate in changing personality and the gene expression. This is a preliminary study with a single-case experimental design with replication in which 2 subjects participated. The results and potential implications for research and psychotherapy are discussed.Amigó Borrás, S.; Caselles Moncho, A.; Micó Ruiz, JC. (2013). Self-Regulation Therapy to Reproduce Drug Effects: A Suggestion Technique to Change Personality and the DRD3 Gene Expression. International Journal of Clinical and Experimental Hypnosis. 61(3):282-304. doi:10.1080/00207144.2013.784094S282304613Accili, D., Fishburn, C. S., Drago, J., Steiner, H., Lachowicz, J. E., Park, B. H., … Fuchs, S. (1996). A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proceedings of the National Academy of Sciences, 93(5), 1945-1949. doi:10.1073/pnas.93.5.1945Amigó, S., Caselles, A., & Micó, J. C. (2008). A dynamic extraversion model. The brain’s response to a single dose of a stimulant drug. British Journal of Mathematical and Statistical Psychology, 61(1), 211-231. doi:10.1348/000711007x185514Amigó, S., Caselles, A., & Micó, J. C. (2010). General Factor of Personality Questionnaire (GFPQ): Only one Factor to Understand Personality? The Spanish journal of psychology, 13(1), 5-17. doi:10.1017/s1138741600003644Barbanti, P., Bronzetti, E., Ricci, A., Cerbo, R., Fabbrini, G., Buzzi, M. G., … Lenzi, G. L. (1996). Increased density of dopamine D5 receptor in peripheral blood lymphocytes of migraineurs: a marker for migraine? Neuroscience Letters, 207(2), 73-76. doi:10.1016/0304-3940(96)12491-5Barbanti, P., Fabbrini, G., Ricci, A., Bruno, G., Cerbo, R., Bronzetti, E., … Luigi Lenzi, G. (2000). Reduced density of dopamine D2-like receptors on peripheral blood lymphocytes in Alzheimer’s disease. Mechanisms of Ageing and Development, 120(1-3), 65-75. doi:10.1016/s0047-6374(00)00183-4Barbanti, P., Fabbrini, G., Ricci, A., Pascali, M. P., Bronzetti, E., Amenta, F., … Cerbo, R. (2000). Migraine Patients Show an Increased Density of Dopamine D3 and D4 Receptors on Lymphocytes. Cephalalgia, 20(1), 15-19. doi:10.1046/j.1468-2982.2000.00001.xBarr, G. A., Sharpless, N. S., Cooper, S., Schiff, S. R., Paredes, W., & Bridger, W. H. (1983). Classical conditioning, decay and extinction of cocaine-induced hyperactivity and stereotypy. Life Sciences, 33(14), 1341-1351. doi:10.1016/0024-3205(83)90817-2Baumann, F. (1970). Hypnosis and the Adolescent Drug Abuser. American Journal of Clinical Hypnosis, 13(1), 17-21. doi:10.1080/00029157.1970.10402074Bayot, A., Capafons, A., & Cardeña, E. (1997). Emotional Self-Regulation Therapy: A New and Efficacious Treatment for Smoking. American Journal of Clinical Hypnosis, 40(2), 146-156. doi:10.1080/00029157.1997.10403418Berke, J. D., Paletzki, R. F., Aronson, G. J., Hyman, S. E., & Gerfen, C. R. (1998). A Complex Program of Striatal Gene Expression Induced by Dopaminergic Stimulation. The Journal of Neuroscience, 18(14), 5301-5310. doi:10.1523/jneurosci.18-14-05301.1998Blachly, P. H. (1971). An «Electric Needle» for Aversive Conditioning of the Needle Ritual. International Journal of the Addictions, 6(2), 327-328. doi:10.3109/10826087109057791Brown, E., Robertson, G., & Fibiger, H. (1992). Evidence for conditional neuronal activation following exposure to a cocaine-paired environment: role of forebrain limbic structures. The Journal of Neuroscience, 12(10), 4112-4121. doi:10.1523/jneurosci.12-10-04112.1992Caine, S., & Koob, G. (1993). Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science, 260(5115), 1814-1816. doi:10.1126/science.8099761Capafons, A., & Amigoó, S. (1995). Emotional Self-Regulation Therapy for Smoking Reduction: Description and Initial Empirical Data. International Journal of Clinical and Experimental Hypnosis, 43(1), 7-19. doi:10.1080/00207149508409372Caselles, A., Micó, J. C., & Amigó, S. (2010). Cocaine addiction and personality: A mathematical model. British Journal of Mathematical and Statistical Psychology, 63(2), 449-480. doi:10.1348/000711009x470768Caselles, A., Micó, J. C., & Amigó, S. (2011). Dynamics of the General Factor of Personality in Response to a Single Dose of Caffeine. The Spanish journal of psychology, 14(2), 675-692. doi:10.5209/rev_sjop.2011.v14.n2.16Comings, D., Gade-Andavolu, R., Gonzalez, N., Wu, S., Muhleman, D., Blake, H., … MacMurray, J. (2001). A multivariate analysis of 59 candidate genes in personality traits: the temperament and character inventory. Clinical Genetics, 58(5), 375-385. doi:10.1034/j.1399-0004.2000.580508.xCzermak, C., Lehofer, M., Renger, H., Wagner, E. M., Lemonis, L., Rohrhofer, A., … Liebmann, P. M. (2004). Dopamine receptor D3 mRNA expression in human lymphocytes is negatively correlated with the personality trait of persistence. Journal of Neuroimmunology, 150(1-2), 145-149. doi:10.1016/j.jneuroim.2004.01.009Daly, S. A., & Waddington, J. L. (1993). Behavioural effects of the putative D-3 dopamine receptor agonist 7-OH-DPAT in relation to other «D-2-like» agonists. Neuropharmacology, 32(5), 509-510. doi:10.1016/0028-3908(93)90177-5Gilbert, D. G., & Hagen, R. L. (1985). Electrodermal responses to movie stressors: Nicotine × extraversion interactions. Personality and Individual Differences, 6(5), 573-578. doi:10.1016/0191-8869(85)90006-6Gilbert, D. B., Millar, J., & Cooper, S. J. (1995). The putative dopamine D3 agonist, 7-OH-DPAT, reduces dopamine release in the nucleus accumbens and electrical self-stimulation to the ventral tegmentum. Brain Research, 681(1-2), 1-7. doi:10.1016/0006-8993(95)00247-nHastings, A. (2006). An Extended Nondrug MDMA-Like Experience Evoked Through Posthypnotic Suggestion. Journal of Psychoactive Drugs, 38(3), 273-283. doi:10.1080/02791072.2006.10399853Ilani, T., Ben-Shachar, D., Strous, R. D., Mazor, M., Sheinkman, A., Kotler, M., & Fuchs, S. (2001). A peripheral marker for schizophrenia: Increased levels of D3 dopamine receptor mRNA in blood lymphocytes. Proceedings of the National Academy of Sciences, 98(2), 625-628. doi:10.1073/pnas.98.2.625Kollins, S. H., MacDonald, E. K., & Rush, C. R. (2001). Assessing the abuse potential of methylphenidate in nonhuman and human subjects: a review. Pharmacology Biochemistry and Behavior, 68(3), 611-627. doi:10.1016/s0091-3057(01)00464-6Lejeune, F., & Millan, M. J. (1995). Activation of dopamine D3 autoreceptors inhibits firing of ventral tegmental dopaminergic neurones in vivo. European Journal of Pharmacology, 275(3), R7-R9. doi:10.1016/0014-2999(95)00106-uLevant, B. (1998). Differential distribution of D3 dopamine receptors in the brains of several mammalian species. Brain Research, 800(2), 269-274. doi:10.1016/s0006-8993(98)00529-0LEVINE, D. G. (1974). «Needle Freaks»: Compulsive Self-Injection Drug Users. American Journal of Psychiatry, 131(3), 297-300. doi:10.1176/ajp.131.3.297LYNCH, J. J., STEIN, E. A., & FERTZIGER, A. P. (1976). AN ANALYSIS OF 70 YEARS OF MORPHINE CLASSICAL CONDITIONING. The Journal of Nervous and Mental Disease, 163(1), 47-58. doi:10.1097/00005053-197607000-00007Merchant, K. M., Figur, L. M., & Evans, D. L. (1996). Induction of c-fos mRNA in Rat Medial Prefrontal Cortex by Antipsychotic Drugs: Role of Dopamine D2 and D3 Receptors. Cerebral Cortex, 6(4), 561-570. doi:10.1093/cercor/6.4.561Muntaner, C., Cascella, N. G., Kumor, K. M., Nagoshi, C., Herning, R., & Jaffe, J. (1989). Placebo responses to cocaine administration in humans: effects of prior administrations and verbal instructions. Psychopharmacology, 99(2), 282-286. doi:10.1007/bf00442823Musek, J. (2007). A general factor of personality: Evidence for the Big One in the five-factor model. Journal of Research in Personality, 41(6), 1213-1233. doi:10.1016/j.jrp.2007.02.003Nagai, Y., Ueno, S., Saeki, Y., Soga, F., Hirano, M., & Yanagihara, T. (1996). Decrease of the D3 dopamine receptor mRNA expression in lymphocytes from patients with Parkinson’s disease. Neurology, 46(3), 791-795. doi:10.1212/wnl.46.3.791Neisewander, J. L., Baker, D. A., Fuchs, R. A., Tran-Nguyen, L. T. L., Palmer, A., & Marshall, J. F. (2000). Fos Protein Expression and Cocaine-Seeking Behavior in Rats after Exposure to a Cocaine Self-Administration Environment. The Journal of Neuroscience, 20(2), 798-805. doi:10.1523/jneurosci.20-02-00798.2000IMissbrandt, H., Ekman, A., Eriksson, E., & Heilig, M. (1995). Dopamine D3 receptor antisense influences dopamine synthesis in rat brain. NeuroReport, 6(3), 573-576. doi:10.1097/00001756-199502000-00041O’BRIEN, C. P., CHILDRESS, A. R., McLELLAN, A. T., & EHRMAN, R. (1992). Classical Conditioning in Drug-Dependent Humans. Annals of the New York Academy of Sciences, 654(1 The Neurobiol), 400-415. doi:10.1111/j.1749-6632.1992.tb25984.xO’Brien, C. P., Nace, E. P., Mintz, J., Meyers, A. L., & Ream, N. (1980). Follow-up of Vietnam veterans. I. relapse to drug use after Vietnam service. Drug and Alcohol Dependence, 5(5), 333-340. doi:10.1016/0376-8716(80)90159-3Pilla, M., Perachon, S., Sautel, F., Garrido, F., Mann, A., Wermuth, C. G., … Sokoloff, P. (1999). Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature, 400(6742), 371-375. doi:10.1038/22560Post, R. M., Lockfeld, A., Squillace, K. M., & Contel, N. R. (1981). Drug-environment interaction: Context dependency of cocaine-induced behavioral sensitization. Life Sciences, 28(7), 755-760. doi:10.1016/0024-3205(81)90157-0Ricci, A., Bronzetti, E., Mignini, F., Tayebati, S. K., Zaccheo, D., & Amenta, F. (1999). Dopamine D1-like receptor subtypes in human peripheral blood lymphocytes. Journal of Neuroimmunology, 96(2), 234-240. doi:10.1016/s0165-5728(99)00042-9Schiltz, C. A., Kelley, A. E., & Landry, C. F. (2005). Contextual cues associated with nicotine administration increasearcmRNA expression in corticolimbic areas of the rat brain. European Journal of Neuroscience, 21(6), 1703-1711. doi:10.1111/j.1460-9568.2005.04001.xSchutte, N. S., Malouff, J. M., Segrera, E., Wolf, A., & Rodgers, L. (2003). States reflecting the Big Five dimensions. Personality and Individual Differences, 34(4), 591-603. doi:10.1016/s0191-8869(02)00031-4Smith, B. D., Rockwell-Tischer, S., & Davidson, R. (1986). Extraversion and arousal: Effects of attentional conditions on electrodermal activity. Personality and Individual Differences, 7(3), 293-303. doi:10.1016/0191-8869(86)90004-8Stewart, J., de Wit, H., & Eikelboom, R. (1984). Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychological Review, 91(2), 251-268. doi:10.1037/0033-295x.91.2.251Strange, P. G. (1993). New insights into dopamine receptors in the central nervous system. Neurochemistry International, 22(3), 223-236. doi:10.1016/0197-0186(93)90050-fSuzuki, M., Hurd, Y. L., Sokoloff, P., Schwartz, J.-C., & Sedvall, G. (1998). D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Research, 779(1-2), 58-74. doi:10.1016/s0006-8993(97)01078-0Takahashi, N., Nagai, Y., Ueno, S., Saeki, Y., & Yanagihara, T. (1992). Human peripheral blood lymphocytes express D5 dopamine receptor gene and transcribe the two pseudogenes. FEBS Letters, 314(1), 23-25. doi:10.1016/0014-5793(92)81452-rTorres, G., & Rivier, C. (1994). Induction of c-fos in rat brain by acute cocaine and fenfluramine exposure: a comparison study. Brain Research, 647(1), 1-9. doi:10.1016/0006-8993(94)91391-9Volkow, N. D., Wang, G.-J., Fowler, J. S., Gatley, S. J., Logan, J., Ding, Y.-S., … Pappas, N. (1998). Dopamine Transporter Occupancies in the Human Brain Induced by Therapeutic Doses of Oral Methylphenidate. American Journal of Psychiatry, 155(10), 1325-1331. doi:10.1176/ajp.155.10.1325Volkow, N. D., Wang, G.-J., Fowler, J. S., Telang, F., Maynard, L., Logan, J., … Swanson, J. M. (2004). Evidence That Methylphenidate Enhances the Saliency of a Mathematical Task by Increasing Dopamine in the Human Brain. American Journal of Psychiatry, 161(7), 1173-1180. doi:10.1176/appi.ajp.161.7.1173Vorel, S. R., Ashby, C. R., Paul, M., Liu, X., Hayes, R., Hagan, J. J., … Gardner, E. L. (2002). Dopamine D3Receptor Antagonism Inhibits Cocaine-Seeking and Cocaine-Enhanced Brain Reward in Rats. The Journal of Neuroscience, 22(21), 9595-9603. doi:10.1523/jneurosci.22-21-09595.2002Yano, M., & Steiner, H. (2004). Topography of Methylphenidate (Ritalin)-Induced Gene Regulation in the Striatum: Differential Effects on c-Fos, Substance P and Opioid Peptides. Neuropsychopharmacology, 30(5), 901-915. doi:10.1038/sj.npp.130061

    Cocaine Directly Inhibits α6-Containing Nicotinic Acetylcholine Receptors in Human SH-EP1 Cells and Mouse VTA DA Neurons

    Get PDF
    Alpha6-containing nicotinic acetylcholine receptors are primarily found in neurons of the midbrain dopaminergic (DA) system, suggesting these receptors are potentially involved in drug reward and dependence. Here, we report a novel effect that cocaine directly inhibits α6N/α3Cβ2β3-nAChR (α6*-nAChRs) function. Human α6*-nAChRs were heterologously expressed within cells of the SH-EP1 cell line for functional characterization. Mechanically dissociated DA neurons from mouse ventral tegmental area (VTA) were used as a model of presynaptic α6*-nAChR activation since this method preserves terminal boutons. Patch-clamp recordings in whole-cell configuration were used to measure α6*-nAChR function as well as evaluate the effects of cocaine. In SH-EP1 cells containing heterologously expressed human α6*-nAChRs, cocaine inhibits nicotine-induced inward currents in a concentration-dependent manner with an IC50 value of 30 μM. Interestingly, in the presence of 30 μM cocaine, the maximal current response of the nicotine concentration-response curve is reduced without changing nicotine’s EC50 value, suggesting a noncompetitive mechanism. Furthermore, analysis of whole-cell current kinetics demonstrated that cocaine slows nAChR channel activation but accelerates whole-cell current decay time. Our findings demonstrate that cocaine-induced inhibition occurs solely with bath application, but not during intracellular administration, and this inhibition is not use-dependent. Additionally, in Xenopus oocytes, cocaine inhibits both α6N/α3Cβ2β3-nAChRs and α6M211L/α3ICβ2β3-nCAhRs similarly, suggesting that cocaine may not act on the α3 transmembrane domain of chimeric α6N/α3Cβ2β3-nAChR. In mechanically isolated VTA DA neurons, cocaine abolishes α6*-nAChR-mediated enhancement of spontaneous inhibitory postsynaptic currents (sIPSCs). Collectively, these studies provide the first evidence that cocaine directly inhibits the function of both heterologously and naturally expressed α6*-nAChRs. These findings suggest that α6*-nAChRs may provide a novel pharmacological target mediating the effects of cocaine and may underlie a novel mechanism of cocaine reward and dependence

    Identification of Brain Nuclei Implicated in Cocaine-Primed Reinstatement of Conditioned Place Preference: A Behaviour Dissociable from Sensitization

    Get PDF
    Relapse prevention represents the primary therapeutic challenge in the treatment of drug addiction. As with humans, drug-seeking behaviour can be precipitated in laboratory animals by exposure to a small dose of the drug (prime). The aim of this study was to identify brain nuclei implicated in the cocaine-primed reinstatement of a conditioned place preference (CPP). Thus, a group of mice were conditioned to cocaine, had this place preference extinguished and were then tested for primed reinstatement of the original place preference. There was no correlation between the extent of drug-seeking upon reinstatement and the extent of behavioural sensitization, the extent of original CPP or the extinction profile of mice, suggesting a dissociation of these components of addictive behaviour with a drug-primed reinstatement. Expression of the protein product of the neuronal activity marker c-fos was assessed in a number of brain regions of mice that exhibited reinstatement (R mice) versus those which did not (NR mice). Reinstatement generally conferred greater Fos expression in cortical and limbic structures previously implicated in drug-seeking behaviour, though a number of regions not typically associated with drug-seeking were also activated. In addition, positive correlations were found between neural activation of a number of brain regions and reinstatement behaviour. The most significant result was the activation of the lateral habenula and its positive correlation with reinstatement behaviour. The findings of this study question the relationship between primed reinstatement of a previously extinguished place preference for cocaine and behavioural sensitization. They also implicate activation patterns of discrete brain nuclei as differentiators between reinstating and non-reinstating mice
    corecore