17 research outputs found

    A Functional Signature Ontology (FUSION) screen detects an AMPK inhibitor with selective toxicity toward human colon tumor cells

    Get PDF
    AMPK is a serine threonine kinase composed of a heterotrimer of a catalytic, kinase-containing α and regulatory β and γ subunits. Here we show that individual AMPK subunit expression and requirement for survival varies across colon cancer cell lines. While AMPKα1 expression is relatively consistent across colon cancer cell lines, AMPKα1 depletion does not induce cell death. Conversely, AMPKα2 is expressed at variable levels in colon cancer cells. In high expressing SW480 and moderate expressing HCT116 colon cancer cells, siRNA-mediated depletion induces cell death. These data suggest that AMPK kinase inhibition may be a useful component of future therapeutic strategies. We used Functional Signature Ontology (FUSION) to screen a natural product library to identify compounds that were inhibitors of AMPK to test its potential for detecting small molecules with preferential toxicity toward human colon tumor cells. FUSION identified 5′-hydroxy-staurosporine, which competitively inhibits AMPK. Human colon cancer cell lines are notably more sensitive to 5′-hydroxy-staurosporine than are non-transformed human colon epithelial cells. This study serves as proof-of-concept for unbiased FUSION-based detection of small molecule inhibitors of therapeutic targets and highlights its potential to identify novel compounds for cancer therapy development

    Characterization of CDK(5) Inhibitor, 20-223 (aka CP668863) for Colorectal Cancer Therapy

    Get PDF
    Colorectal cancer (CRC) remains one of the leading causes of cancer related deaths in the United States. Currently, there are limited therapeutic options for patients suffering from CRC, none of which focus on the cell signaling mechanisms controlled by the popular kinase family, cyclin dependent kinases (CDKs). Here we evaluate a Pfizer developed compound, CP668863, that inhibits cyclin-dependent kinase 5 (CDK5) in neurodegenerative disorders. CDK5 has been implicated in a number of cancers, most recently as an oncogene in colorectal cancers. Our lab synthesized and characterized CP668863 – now called 20-223. In our established colorectal cancer xenograft model, 20-223 reduced tumor growth and tumor weight indicating its value as a potential anti-CRC agent. We subjected 20-223 to a series of cell-free and cell-based studies to understand the mechanism of its anti-tumor effects. In our hands, in vitro 20-223 is most potent against CDK2 and CDK5. The clinically used CDK inhibitor AT7519 and 20-223 share the aminopyrazole core and we used it to benchmark the 20-223 potency. In CDK5 and CDK2 kinase assays, 20-223 was ~3.5-fold and ~65.3-fold more potent than known clinically used CDK inhibitor, AT7519, respectively. Cell-based studies examining phosphorylation of downstream substrates revealed 20-223 inhibits the kinase activity of CDK5 and CDK2 in multiple CRC cell lines. Consistent with CDK5 inhibition, 20-223 inhibited migration of CRC cells in a wound-healing assay. Profiling a panel of CRC cell lines for growth inhibitory effects showed that 20-223 has nanomolar potency across multiple CRC cell lines and was on an average \u3e2-fold more potent than AT7519. Cell cycle analyses in CRC cells revealed that 20-223 phenocopied the effects associated with AT7519. Collectively, these findings suggest that 20-223 exerts anti-tumor effects against CRC by targeting CDK 2/5 and inducing cell cycle arrest. Our studies also indicate that 20-223 is a suitable lead compound for colorectal cancer therapy

    Biochemical Recurrence Surrogacy for Clinical Outcomes After Radiotherapy for Adenocarcinoma of the Prostate

    Get PDF
    PURPOSE: The surrogacy of biochemical recurrence (BCR) for overall survival (OS) in localized prostate cancer remains controversial. Herein, we evaluate the surrogacy of BCR using different surrogacy analytic methods. MATERIALS AND METHODS: Individual patient data from 11 trials evaluating radiotherapy dose escalation, androgen deprivation therapy (ADT) use, and ADT prolongation were obtained. Surrogate candidacy was assessed using the Prentice criteria (including landmark analyses) and the two-stage meta-analytic approach (estimating Kendall's tau and the R2). Biochemical recurrence-free survival (BCRFS, time from random assignment to BCR or any death) and time to BCR (TTBCR, time from random assignment to BCR or cancer-specific deaths censoring for noncancer-related deaths) were assessed. RESULTS: Overall, 10,741 patients were included. Dose escalation, addition of short-term ADT, and prolongation of ADT duration significantly improved BCR (hazard ratio [HR], 0.71 [95% CI, 0.63 to 0.79]; HR, 0.53 [95% CI, 0.48 to 0.59]; and HR, 0.54 [95% CI, 0.48 to 0.61], respectively). Adding short-term ADT (HR, 0.91 [95% CI, 0.84 to 0.99]) and prolonging ADT (HR, 0.86 [95% CI, 0.78 to 0.94]) significantly improved OS, whereas dose escalation did not (HR, 0.98 [95% CI, 0.87 to 1.11]). BCR at 48 months was associated with inferior OS in all three groups (HR, 2.46 [95% CI, 2.08 to 2.92]; HR, 1.51 [95% CI, 1.35 to 1.70]; and HR, 2.31 [95% CI, 2.04 to 2.61], respectively). However, after adjusting for BCR at 48 months, there was no significant treatment effect on OS (HR, 1.10 [95% CI, 0.96 to 1.27]; HR, 0.96 [95% CI, 0.87 to 1.06] and 1.00 [95% CI, 0.90 to 1.12], respectively). The patient-level correlation (Kendall's tau) for BCRFS and OS ranged between 0.59 and 0.69, and that for TTBCR and OS ranged between 0.23 and 0.41. The R2 values for trial-level correlation of the treatment effect on BCRFS and TTBCR with that on OS were 0.563 and 0.160, respectively. CONCLUSION: BCRFS and TTBCR are prognostic but failed to satisfy all surrogacy criteria. Strength of correlation was greater when noncancer-related deaths were considered events.</p

    Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design

    Get PDF
    © 2021. The Author(s). Published by the American Astronomical Society. This work may be used under the terms of the Creative Commons Attribution 4.0 licence. https://creativecommons.org/licenses/by/4.0/Vera C. Rubin Observatory is a ground-based astronomical facility under construction, a joint project of the National Science Foundation and the U.S. Department of Energy, designed to conduct a multipurpose 10 yr optical survey of the Southern Hemisphere sky: the Legacy Survey of Space and Time. Significant flexibility in survey strategy remains within the constraints imposed by the core science goals of probing dark energy and dark matter, cataloging the solar system, exploring the transient optical sky, and mapping the Milky Way. The survey’s massive data throughput will be transformational for many other astrophysics domains and Rubin’s data access policy sets the stage for a huge community of potential users. To ensure that the survey science potential is maximized while serving as broad a community as possible, Rubin Observatory has involved the scientific community at large in the process of setting and refining the details of the observing strategy. The motivation, history, and decision-making process of this strategy optimization are detailed in this paper, giving context to the science-driven proposals and recommendations for the survey strategy included in this Focus Issue.Peer reviewedFinal Published versio

    Biochemical Recurrence Surrogacy for Clinical Outcomes After Radiotherapy for Adenocarcinoma of the Prostate

    Get PDF
    PURPOSE: The surrogacy of biochemical recurrence (BCR) for overall survival (OS) in localized prostate cancer remains controversial. Herein, we evaluate the surrogacy of BCR using different surrogacy analytic methods. MATERIALS AND METHODS: Individual patient data from 11 trials evaluating radiotherapy dose escalation, androgen deprivation therapy (ADT) use, and ADT prolongation were obtained. Surrogate candidacy was assessed using the Prentice criteria (including landmark analyses) and the two-stage meta-analytic approach (estimating Kendall's tau and the R2). Biochemical recurrence-free survival (BCRFS, time from random assignment to BCR or any death) and time to BCR (TTBCR, time from random assignment to BCR or cancer-specific deaths censoring for noncancer-related deaths) were assessed. RESULTS: Overall, 10,741 patients were included. Dose escalation, addition of short-term ADT, and prolongation of ADT duration significantly improved BCR (hazard ratio [HR], 0.71 [95% CI, 0.63 to 0.79]; HR, 0.53 [95% CI, 0.48 to 0.59]; and HR, 0.54 [95% CI, 0.48 to 0.61], respectively). Adding short-term ADT (HR, 0.91 [95% CI, 0.84 to 0.99]) and prolonging ADT (HR, 0.86 [95% CI, 0.78 to 0.94]) significantly improved OS, whereas dose escalation did not (HR, 0.98 [95% CI, 0.87 to 1.11]). BCR at 48 months was associated with inferior OS in all three groups (HR, 2.46 [95% CI, 2.08 to 2.92]; HR, 1.51 [95% CI, 1.35 to 1.70]; and HR, 2.31 [95% CI, 2.04 to 2.61], respectively). However, after adjusting for BCR at 48 months, there was no significant treatment effect on OS (HR, 1.10 [95% CI, 0.96 to 1.27]; HR, 0.96 [95% CI, 0.87 to 1.06] and 1.00 [95% CI, 0.90 to 1.12], respectively). The patient-level correlation (Kendall's tau) for BCRFS and OS ranged between 0.59 and 0.69, and that for TTBCR and OS ranged between 0.23 and 0.41. The R2 values for trial-level correlation of the treatment effect on BCRFS and TTBCR with that on OS were 0.563 and 0.160, respectively. CONCLUSION: BCRFS and TTBCR are prognostic but failed to satisfy all surrogacy criteria. Strength of correlation was greater when noncancer-related deaths were considered events

    The First Data Release of the Sloan Digital Sky Survey

    Get PDF
    The Sloan Digital Sky Survey has validated and made publicly available its First Data Release. This consists of 2099 square degrees of five-band (u, g, r, i, z) imaging data, 186,240 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 1360 square degrees of this area, and tables of measured parameters from these data. The imaging data go to a depth of r ~ 22.6 and are photometrically and astrometrically calibrated to 2% rms and 100 milli-arcsec rms per coordinate, respectively. The spectra cover the range 3800--9200 A, with a resolution of 1800--2100. Further characteristics of the data are described, as are the data products themselves.Comment: Submitted to The Astronomical Journal. 16 pages. For associated documentation, see http://www.sdss.org/dr

    Kinase Suppressor of Ras 2 (KSR2) expression in the brain regulates energy balance and glucose homeostasis

    Get PDF
    Objective: Kinase Suppressor of Ras 2 (KSR2) is a molecular scaffold coordinating Raf/MEK/ERK signaling that is expressed at high levels in the brain. KSR2 disruption in humans and mice causes obesity and insulin resistance. Understanding the anatomical location and mechanism of KSR2 function should lead to a better understanding of physiological regulation over energy balance. Methods: Mice bearing floxed alleles of KSR2 (KSR2fl/fl) were crossed with mice expressing the Cre recombinase expressed by the Nestin promoter (Nes-Cre) to produce Nes-CreKSR2fl/fl mice. Growth, body composition, food consumption, cold tolerance, insulin and free fatty acid levels, glucose, and AICAR tolerance were measured in gender and age matched KSR2-/- mice. Results: Nes-CreKSR2fl/fl mice lack detectable levels of KSR2 in the brain. The growth and onset of obesity of Nes-CreKSR2fl/fl mice parallel those observed in KSR2-/- mice. As in KSR2-/- mice, Nes-CreKSR2fl/fl are glucose intolerant with elevated fasting and cold intolerance. Male Nes-CreKSR2fl/fl mice are hyperphagic, but female Nes-CreKSR2fl/fl mice are not. Unlike KSR2-/- mice, Nes-CreKSR2fl/fl mice respond normally to leptin and AICAR, which may explain why the degree of obesity of adult Nes-CreKSR2fl/fl mice is not as severe as that observed in KSR2-/- animals. Conclusions: These observations suggest that, in the brain, KSR2 regulates energy balance via control of feeding behavior and adaptive thermogenesis, while a second KSR2-dependent mechanism, functioning through one or more other tissues, modulates sensitivity to leptin and activators of the energy sensor AMPK

    A 47-year-old woman with nuclear protein in testis midline carcinoma masquerading as a sinus infection: a case report and review of the literature

    No full text
    Abstract Background Nuclear protein in testis midline carcinoma is a rare, highly metastatic undifferentiated carcinoma that typically arises in midline structures and is characterized by having a fusion involving the nuclear protein in testis, NUT, gene. Nuclear protein in testis midline carcinoma has been identified in patients of all ages and is often initially misdiagnosed due to the rapid timeline of symptom onset. Case presentation Here we report the case of a 47-year-old Caucasian woman with a nuclear protein in testis midline carcinoma that was initially mistaken for a sinus infection. After symptom progression while on an aggressive antibiotic regimen, the source of her symptoms was correctly identified as a sella mass. Comprehensive analysis of the tumor was performed, and standard cytogenetic analysis identified a translocation of 15q and 19p. Further testing identified a NUT–BRD4 fusion and confirmed the diagnosis of nuclear protein in testis midline carcinoma. Despite definitive diagnosis and surgical, radiation, and, ultimately, systemic therapy, she progressed rapidly, developing widespread metastases, and ultimately died from the disease 5 months after diagnosis. Conclusions Based on this and other previous reports, aggressive therapy should be initiated once nuclear protein in testis midline carcinoma is diagnosed and close surveillance employed in an attempt to prevent and/or recognize metastases as early as possible. Aggressive therapy has shown little efficacy such that the average overall survival for patients with nuclear protein in testis midline carcinoma is very short, often less than 6 months. Thus, early enrollment into clinical trials testing novel therapies for the treatment of nuclear protein in testis midline carcinoma should be considered. Finally, additional reports of nuclear protein in testis midline carcinoma are needed to fully characterize this rare and highly aggressive cancer

    ERK-mediated TIMELESS expression suppresses G2/M arrest in colon cancer cells.

    Get PDF
    The cell cycle is under circadian regulation. Oncogenes can dysregulate circadian-regulated genes to disrupt the cell cycle, promoting tumor cell proliferation. As a regulator of G2/M arrest in response to DNA damage, the circadian gene Timeless Circadian Clock (TIMELESS) coordinates this connection and is a potential locus for oncogenic manipulation. TIMELESS expression was evaluated using RNASeq data from TCGA and by RT-qPCR and western blot analysis in a panel of colon cancer cell lines. TIMELESS expression following ERK inhibition was examined via western blot. Cell metabolic capacity, propidium iodide, and CFSE staining were used to evaluate the effect of TIMELESS depletion on colon cancer cell survival and proliferation. Cell metabolic capacity following TIMELESS depletion in combination with Wee1 or CHK1 inhibition was assessed. TIMELESS is overexpressed in cancer and required for increased cancer cell proliferation. ERK activation promotes TIMELESS expression. TIMELESS depletion increases ÎłH2AX, a marker of DNA damage, and triggers G2/M arrest via increased CHK1 and CDK1 phosphorylation. TIMELESS depletion in combination with Wee1 or CHK1 inhibition causes an additive decrease in cancer cell metabolic capacity with limited effects in non-transformed human colon epithelial cells. The data show that ERK activation contributes to the overexpression of TIMELESS in cancer. Depletion of TIMELESS increases ÎłH2AX and causes G2/M arrest, limiting cell proliferation. These results demonstrate a role for TIMELESS in cancer and encourage further examination of the link between circadian rhythm dysregulation and cancer cell proliferation

    ERK-mediated TIMELESS expression suppresses G2/M arrest in colon cancer cells

    Get PDF
    The cell cycle is under circadian regulation. Oncogenes can dysregulate circadian-regulated genes to disrupt the cell cycle, promoting tumor cell proliferation. As a regulator of G2/M arrest in response to DNA damage, the circadian gene Timeless Circadian Clock (TIMELESS) coordinates this connection and is a potential locus for oncogenic manipulation. TIMELESS expression was evaluated using RNASeq data from TCGA and by RT-qPCR and western blot analysis in a panel of colon cancer cell lines. TIMELESS expression following ERK inhibition was examined via western blot. Cell metabolic capacity, propidium iodide, and CFSE staining were used to evaluate the effect of TIMELESS depletion on colon cancer cell survival and proliferation. Cell metabolic capacity following TIMELESS depletion in combination with Wee1 or CHK1 inhibition was assessed. TIMELESS is overexpressed in cancer and required for increased cancer cell proliferation. ERK activation promotes TIMELESS expression. TIMELESS depletion increases ÎłH2AX, a marker of DNA damage, and triggers G2/M arrest via increased CHK1 and CDK1 phosphorylation. TIMELESS depletion in combination with Wee1 or CHK1 inhibition causes an additive decrease in cancer cell metabolic capacity with limited effects in non-transformed human colon epithelial cells. The data show that ERK activation contributes to the overexpression of TIMELESS in cancer. Depletion of TIMELESS increases ÎłH2AX and causes G2/M arrest, limiting cell proliferation. These results demonstrate a role for TIMELESS in cancer and encourage further examination of the link between circadian rhythm dysregulation and cancer cell proliferation
    corecore