20 research outputs found

    Evaluation of genetic diversity in Sulla coronaria from different geographical populations in Tunisia by inter simple sequence repeat (ISSR)

    Get PDF
    Five oligonucleotides generating 116 markers complementary to simple sequence repeats were used in order to characterize wild and cultivated ecotypes of Sulla coronaria and assess genetic diversity suitable in breeding programs. While analysing populations, a large genetic variability was revealed and supported by the preferentially allogamous mating system of the species. Moreover, the highest level of intra-population variations (Hpop/Hsp = 69.9) either of wild or cultivated accessions have been strongly evidenced by a significant adaptation to variety of habitats. In addition, the structure of populations was independent from the bioclimatic stages and was not affected by environmental factors as shown by the non correlation between the geographic and the Nei and Li’s genetic distances (r= 0.461 and p=0.068>0.05). The unweighted pair group method with arithmetic mean (UPGMA) genetic relationships showed that some local spontaneous accessions characterised by an orthotropic port (Jebel Zit and Beja) were also molecularly similar to other cultivars.Key words: Sulla coronaria, wild and cultivated forms, intra and inter-populations variability, microsatellites (ISSRs), bioclimatic stages

    Assessment of the genetic variation in alfalfa genotypes using SRAP markers for breeding purposes

    Get PDF
    The molecular diversity studies of alfalfa (Medicago sativa L.) germplasm could contribute to a more precise selection of parental populations in many breeding programs. Sequence-related amplified polymorphism (SRAP) markers were used to assess the genetic diversity of 110 individual plants from 13 selected alfalfa cultivars, landraces, and natural populations from Tunisia, Australia, Serbia, and Kazakhstan. Ten polymorphic SRAP primer combinations generated 137 alleles with 0.90 polymorphism information content. The percentage of polymorphic bands per genotype ranged from 57.66% to 70.07% with a mean of 64.29% and overall value of 100%. The genotype Sardi 10 had the highest value for the effective number of alleles; Nei's gene diversity and Shannon information index, exhibited the highest variability level (Ne = 1.453, He = 0.259, I = 0.381, respectively), whereas the genotype Nera exhibited the lowest variability level (Ne = 1.359, He = 0.211, I = 0.317, respectively). The AMOVA analysis showed that 68% of the variance was within the genotypes; this was in line with the coefficient of genetic differentiation (Gst = 0.370). The genetic relatedness of alfalfa individuals analyzed by the neighbor-joining dendrogram was consistent with the Bayesian model-based clustering approach. The exceptions were individuals from genotypes Slavija and Nera, which were grouped separately by STRUCTURE analyses. These results provide useful information for the management of alfalfa genetic resources and the rational use of local and foreign alfalfa populations in breeding programs focused on the development of new, high-yielding cultivars more adapted to drought conditions in North Africa

    Comparative analysis of traditional and modern apricot breeding programs: A case of study with Spanish and Tunisian apricot breeding germplasm

    Get PDF
    Traditional plant breeding is based on the observation of variation and the selection of the best phenotypes, whereas modern breeding is characterised by the use of controlled mating and the selection of descendants using molecular markers. In this work, a comparative analysis of genetic diversity in a traditional (Tunisian) and a modern (Spanish) apricot breeding programme was performed at the phenotypic and molecular level using simple sequence repeat (SSR) markers. Seven phenotypic traits were evaluated in 42 Tunisian apricot accessions and 30 genotypes from the Spanish apricot programme. In addition, 20 SSR markers previously described as linked to specific phenotypic traits were assayed. Results showed that modern breeding using controlled crosses increases the size of the fruit. The fruit weight average observed in the Tunisian cultivars was of 20.15 g. In the case of traditional Spanish cultivars the average weight was 47.12 g, whereas the average weight of the other progenitors from France, USA and South Africa was 72.85 g. Finally, in the new releases from the CEBAS-CSIC breeding programme, the average weight was 72.82 g. In addition, modern bred cultivars incorporate desirable traits such as self-compatibility and firmness. Cluster and structural analysis based on SSR data clearly differentiates the genotypes according to their geographic origin and pedigree. Finally, results showed an association between some alleles of PaCITA7 and UDP96003 SSR markers with apricot fruit weight, one allele of UDAp407 marker with fruit firmness and one allele of UDP98406 marker with fruit ripening

    Influence of climate variation on phenolic composition and antioxidant capacity of Medicago minima populations

    Full text link
    peer reviewedMedicago minima is a pasture legume that grows almost all over the world. In Tunisia, it occupies various climatic environments and is considered the most abundant annual Medicago plant. However, this species is unconsumed and unused by humans. This study aimed to explore the phytochemical characteristics of Medicago minima selected from diferent provenances in Tunisia and subsequently investigate the infuence of environmental factors on their phenolic composition and antioxidant activity. Therefore, a calorimetric method and DPPH tests provided the total phenolic and totalfavonoid contents and antioxidant potential in roots, stems, leaves and seeds. High performance liquid chromatography (HPLC) identifed and quantifed four phenolic acids and three favonoids in the studied organs. Roots and leaves showed the greatest phenolic compound content and had high antioxidant activity. Rutin and syringic acid (leaves) represent a characteristic for this species. For each organ, principal component analysis of phenolic profles showed that the root’s phenolic composition could be an indication of the plant adaptation to even small changes in its environments. Plants originating from a cold climate, higher altitude or semi-arid environment had the highest phenolic compound contents in their organs. Our fndings provide useful information for the exploitation of the phenolic compounds in these weeds for the development of environmental sustainability

    Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin

    Get PDF
    Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699In order to reduce energy waste for artificial lights and subsequent air conditioning in plant growth chambers, the aim of this preliminary study was to evaluate the feasibility of growing the microvine under 100% of LED illumination. Plant growth under two different LED lights was compared amongst each other and with plants maintained in greenhouse conditions. Regarding the impact on the reproductive and vegetative systems, the study showed that LED light is suitable to grow microvines in confined environments. Plants exposed to LED light exhibited similar leaf emergence rate but reduced vegetative and reproductive organ size compared to plants grown in the greenhouse. Photosynthesis for plants exposed to LED light was higher than what is usually observed on grapevine under natural conditions

    Grafting versus seed propagated apricot populations: two main gene pools in Tunisia evidenced by SSR markers and model-based Bayesian clustering

    Get PDF
    Apricot was introduced into the Mediterranean Basin from China and Asian mountains through the Middle-East and the Central Europe. Traditionally present in Tunisia, we were interested in accessing the origin of apricot species in the country, and in particular in the number and the location of its introductions. A set of 82 representative apricot accessions including 49 grafted cultivars and 33 seed propagated ‘Bargougs’ were genotyped using 24 microsatellite loci revealing a total of 135 alleles. The model-based Bayesian clustering analysis using both Structure and InStruct programs as well as the multivariate method revealed five distinct genetic clusters. The genetic differentiation among clusters showed that cluster 1, with only four cultivars, was the most differentiated from the four remaining genetic clusters, which constituted the largest part of the studied germplasm. According to their geographic origin, the five identified groups (north, centre, south, Gafsa oasis and other oases groups) enclosed a similar variation within group, with a low level of differentiation. Overall results highlighted the distinction of two apricot gene pools in Tunisia related to the different mode of propagation of the cultivars: grafted and seed propagated apricot, which enclosed a narrow genetic basis. Our findings support the assumption that grafting and seed propagated apricots shared the same origin

    Population structure and core collection construction of apricot (Prunus armeniaca L.) in north Africa based on microsatellite markers

    No full text
    North Africa enclosed original apricot genetic resources with the cohabitation of grafting and seed-propagated accessions. In this study, we assessed the genetic diversity and population structure of 183 apricot accessions using 24 microsatellite markers distributed evenly in the Prunus genome. A total of 192 alleles and a high level of gene diversity (0.593) were detected among the whole panel. Genetic structure analysis revealed the presence of four genetic clusters. We also found that both geographical origin and mode of propagation are important factors structuring genetic diversity in apricot species. Results confirmed the presence of gene exchange between the northern and southern countries of the Mediterranean Basin. Subsequently, a core collection of 98 accessions based on M (maximization) strategy showing 99.47% of allele retention ratio was constructed. No significant differences for Shannon’s information index and Nei’s diversity index were observed between the core and entire collections. Our results provide an effective aid for future germplasm preservation and conservation strategies as well as genetic association studies development in relation to phenotypic dat

    Comparative analysis of traditional and modern apricot breeding programs: A case of study with Spanish and Tunisian apricot breeding germplasm

    No full text
    Traditional plant breeding is based on the observation of variation and the selection of the best phenotypes, whereas modern breeding is characterised by the use of controlled mating and the selection of descendants using molecular markers. In this work, a comparative analysis of genetic diversity in a traditional (Tunisian) and a modern (Spanish) apricot breeding programme was performed at the phenotypic and molecular level using simple sequence repeat (SSR) markers. Seven phenotypic traits were evaluated in 42 Tunisian apricot accessions and 30 genotypes from the Spanish apricot programme. In addition, 20 SSR markers previously described as linked to specific phenotypic traits were assayed. Results showed that modern breeding using controlled crosses increases the size of the fruit. The fruit weight average observed in the Tunisian cultivars was of 20.15 g. In the case of traditional Spanish cultivars the average weight was 47.12 g, whereas the average weight of the other progenitors from France, USA and South Africa was 72.85 g. Finally, in the new releases from the CEBAS-CSIC breeding programme, the average weight was 72.82 g. In addition, modern bred cultivars incorporate desirable traits such as self-compatibility and firmness. Cluster and structural analysis based on SSR data clearly differentiates the genotypes according to their geographic origin and pedigree. Finally, results showed an association between some alleles of PaCITA7 and UDP96003 SSR markers with apricot fruit weight, one allele of UDAp407 marker with fruit firmness and one allele of UDP98406 marker with fruit ripening

    Genetic diversity and differentiation of grafted and seed propagated apricot (Prunus armeniaca L.) in the Maghreb region

    No full text
    UMR 1334 AGAP : Equipe AFEF ‘Architecture et Fonctionnement des Espèces fruitières’ ; Team AFFS ‘Architecture and Functioning of Fruit Species’Publication Inra prise en compte dans l'analyse bibliométrique des publications scientifiques mondiales sur les Fruits, les Légumes et la Pomme de terre. Période 2000-2012. http://prodinra.inra.fr/record/256699Apricots from Maghreb region (Algeria, Morocco and Tunisia) in North Africa are both clonally (by graft-ing) and seed propagated that are mainly grown in oasis agroecosystems. Are these two apricot groups genetically distinct or closely related, as previously suggested? We sought an answer to this question by analysing the genetic diversity and differentiation of 183 apricot accessions from Algeria, Morocco and Tunisia using 24 nuclear microsatellite markers distributed throughout the eight linkage groups of the Prunus genome. A total of 191 alleles were detected in the studied accessions. Similar high genetic diversity parameters were observed among all apricot geographic groups, revealing that there is high genetic variability in apricots from the Maghreb region. We conducted hierarchical clustering using the Neighbor-joining algorithm and showed that apricot can be classified according to its geographic origin and propagation mode in Maghreb. Despite this, we showed that both grafted and seed propagated apri-cots shared a common gene pool. Overall our results will help to improve management and conservation of Maghrebian apricot genetic resources
    corecore