1,390 research outputs found

    Recall patterns and risk of primary liver cancer for subcentimeter ultrasound liver observations: a multicenter study

    Get PDF
    BACKGROUND: Patients with cirrhosis and subcentimeter lesions on liver ultrasound are recommended to undergo short-interval follow-up ultrasound because of the presumed low risk of primary liver cancer (PLC). AIMS: The aim of this study is to characterize recall patterns and risk of PLC in patients with subcentimeter liver lesions on ultrasound. METHODS: We conducted a multicenter retrospective cohort study among patients with cirrhosis or chronic hepatitis B infection who had subcentimeter ultrasound lesions between January 2017 and December 2019. We excluded patients with a history of PLC or concomitant lesions ≥1 cm in diameter. We used Kaplan Meier and multivariable Cox regression analyses to characterize time-to-PLC and factors associated with PLC, respectively. RESULTS: Of 746 eligible patients, most (66.0%) had a single observation, and the median diameter was 0.7 cm (interquartile range: 0.5-0.8 cm). Recall strategies varied, with only 27.8% of patients undergoing guideline-concordant ultrasound within 3-6 months. Over a median follow-up of 26 months, 42 patients developed PLC (39 HCC and 3 cholangiocarcinoma), yielding an incidence of 25.7 cases (95% CI, 6.2-47.0) per 1000 person-years, with 3.9% and 6.7% developing PLC at 2 and 3 years, respectively. Factors associated with time-to-PLC were baseline alpha-fetoprotein \u3e10 ng/mL (HR: 4.01, 95% CI, 1.85-8.71), platelet count ≤150 (HR: 4.90, 95% CI, 1.95-12.28), and Child-Pugh B cirrhosis (vs. Child-Pugh A: HR: 2.54, 95% CI, 1.27-5.08). CONCLUSIONS: Recall patterns for patients with subcentimeter liver lesions on ultrasound varied widely. The low risk of PLC in these patients supports short-interval ultrasound in 3-6 months, although diagnostic CT/MRI may be warranted for high-risk subgroups such as those with elevated alpha-fetoprotein levels

    Ginkgo biloba for the treatment of vitilgo vulgaris: an open label pilot clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitiligo is a common hypopigmentation disorder with significant psychological impact if occurring before adulthood. A pilot clinical trial to determine the feasibility of an RCT was conducted and is reported here.</p> <p>Methods</p> <p>12 participants 12 to 35 years old were recruited to a prospective open-label pilot trial and treated with 60 mg of standardized <it>G. biloba </it>two times per day for 12 weeks. The criteria for feasibility included successful recruitment, 75% or greater retention, effectiveness and lack of serious adverse reactions. Effectiveness was assessed using the Vitiligo Area Scoring Index (VASI) and the Vitiligo European Task Force (VETF), which are validated outcome measures evaluating the area and intensity of depigmentation of vitiligo lesions. Other outcomes included photographs and adverse reactions. Safety was assessed by serum coagulation factors (platelets, PTT, INR) at baseline and week 12.</p> <p>Results</p> <p>After 2 months of recruitment, the eligible upper age limit was raised from 18 to 35 years of age in order to facilitate recruitment of the required sample size. Eleven participants completed the trial with 85% or greater adherence to the protocol. The total VASI score improved by 0.5 (P = 0.021) from 5.0 to 4.5, range of scale 0 (no depigmentation) to 100 (completely depigmented). The progression of vitiligo stopped in all participants; the total VASI indicated an average repigmentation of vitiligo lesions of 15%. VETF total vitiligo lesion area decreased 0.4% (P = 0.102) from 5.9 to 5.6 from baseline to week 12. VETF staging score improved by 0.7 (P = 0.101) from 6.6 to 5.8, and the VETF spreading score improved by 3.9 (P < 0.001)) from 2.7 to -1.2. There were no statistically significant changes in platelet count, PTT, or INR.</p> <p>Conclusions</p> <p>The criteria for feasibility were met after increasing the maximum age limit of the successful recruitment criterion; participant retention, safety and effectiveness criteria were also met. Ingestion of 60 mg of <it>Ginkgo biloba </it>BID was associated with a significant improvement in total VASI vitiligo measures and VETF spread, and a trend towards improvement on VETF measures of vitiligo lesion area and staging. Larger, randomized double-blind clinical studies are warranted and appear feasible.</p> <p>Trial Registration</p> <p>Clinical trials.gov registration number <a href="http://www.clinicaltrials.gov/ct2/show/NCT00907062">NCT00907062</a></p

    HSV-2 glycoprotein gD targets the CC domain of tetherin and promotes tetherin degradation via lysosomal pathway.

    Get PDF
    BACKGROUND: HSV-2 is the major cause of genital herpes. We previously demonstrated that the host viral restriction factor tetherin restricts HSV-2 release and is antagonized by several HSV-2 glycoproteins. However, the mechanisms underlying HSV-2 glycoproteins mediated counteraction of tetherin remain unclear. In this study, we investigated whether tetherin restricts the cell-to-cell spread of HSV-2 and the mechanisms underlying HSV-2 gD mediated antagonism of tetherin. METHODS: Infectious center assays were used to test whether tetherin could affect cell-to-cell spread of HSV-2. Coimmunoprecipitation assays were performed to map the tetherin domains required for HSV-2 gD-mediated downregulation. Immunoflurence assays were performed to detect the accumulation of tetherin in lysosomes or proteasomes. All experiments were repeated for at least three times and the data were performed statistical analysis. RESULTS: 1) Tetherin restricts cell-to-cell spread of HSV-2; 2) HSV-2 gD specifically interacts with the CC domain of tetherin; 3) HSV-2 gD promotes tetherin to the lysosomal degradation pathway. CONCLUSIONS: Tetherin not only restricts HSV-2 release but also its cell-to-cell spread. In turn, HSV-2 gD targets the CC domain of tetherin and promotes its degradation in the lysosome. Findings in this study have increased our understanding of tetherin restriction and viral countermeasures

    Evaluation of the effect of sodium–glucose co‐transporter 2 inhibition with empagliflozin on morbidity and mortality of patients with chronic heart failure and a reduced ejection fraction: rationale for and design of the EMPEROR‐Reduced trial

    Get PDF
    Drugs that inhibit the sodium–glucose co‐transporter 2 (SGLT2) have been shown to reduce the risk of hospitalizations for heart failure in patients with type 2 diabetes. In populations that largely did not have heart failure at the time of enrolment, empagliflozin, canagliflozin and dapagliflozin decreased the risk of serious new‐onset heart failure events by ≈30%. In addition, in the EMPA‐REG OUTCOME trial, empagliflozin reduced the risk of both pump failure and sudden deaths, the two most common modes of death among patients with heart failure. In none of the three trials could the benefits of SGLT2 inhibitors on heart failure be explained by the actions of these drugs as diuretics or anti‐hyperglycaemic agents. These observations raise the possibility that SGLT2 inhibitors could reduce morbidity and mortality in patients with established heart failure, including those without diabetes. The EMPEROR‐Reduced trial is enrolling ≈3600 patients with heart failure and a reduced left ventricular ejection fraction (≤ 40%), half of whom are expected not to have diabetes. Patients are being randomized to placebo or empagliflozin 10 mg daily, which is added to all appropriate treatment with inhibitors of the renin–angiotensin system and neprilysin, beta‐blockers and mineralocorticoid receptor antagonists. The primary endpoint is the time‐to‐first event analysis of the combined risk of cardiovascular death and hospitalization for heart failure, but the trial will also evaluate the effects of empagliflozin on renal function, cardiovascular death, all‐cause mortality, and recurrent hospitalization events. By adjusting eligibility based on natriuretic peptide levels to the baseline ejection fraction, the trial will preferentially enrol high‐risk patients. A large proportion of the participants is expected to have an ejection fraction &lt; 30%, and the estimated annual event rate is expected to be at least 15%. The EMPEROR‐Reduced trial is well‐positioned to determine if the addition of empagliflozin can add meaningfully to current approaches that have established benefits in the treatment of chronic heart failure with left ventricular systolic dysfunction

    Evaluation of the effects of sodium–glucose co‐transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR‐Preserved Trial

    Get PDF
    Background: The principal biological processes that characterize heart failure with a preserved ejection fraction (HFpEF) are systemic inflammation, epicardial adipose tissue accumulation, coronary microcirculatory rarefaction, myocardial fibrosis and vascular stiffness; the resulting impairment of left ventricular and aortic distensibility (especially when accompanied by impaired glomerular function and sodium retention) causes increases in cardiac filling pressures and exertional dyspnoea despite the relative preservation of left ventricular ejection fraction. Independently of their actions on blood glucose, sodium–glucose co‐transporter 2 (SGLT2) inhibitors exert a broad range of biological effects (including actions to inhibit cardiac inflammation and fibrosis, antagonize sodium retention and improve glomerular function) that can ameliorate the pathophysiological derangements in HFpEF. Such SGLT2 inhibitors exert favourable effects in experimental models of HFpEF and have been found in large‐scale trials to reduce the risk for serious heart failure events in patients with type 2 diabetes, many of whom were retrospectively identified as having HFpEF. Study design: The EMPEROR‐Preserved Trial is enrolling ≈5750 patients with HFpEF (ejection fraction &gt;40%), with and without type 2 diabetes, who are randomized to receive placebo or empagliflozin 10 mg/day, which is added to all appropriate treatments for HFpEF and co‐morbidities. Study aims: The primary endpoint is the time‐to‐first‐event analysis of the combined risk for cardiovascular death or hospitalization for heart failure. The trial will also evaluate the effects of empagliflozin on renal function, cardiovascular death, all‐cause mortality and recurrent hospitalization events, and will assess a wide range of biomarkers that reflect important pathophysiological mechanisms that may drive the evolution of HFpEF. The EMPEROR‐Preserved Trial is well positioned to determine if empagliflozin can have a meaningful impact on the course of HFpEF, a disorder for which there are currently few therapeutic options

    Recommendations for the design of therapeutic trials for neonatal seizures

    Get PDF
    Although seizures have a higher incidence in neonates than any other age group and are associated with significant mortality and neurodevelopmental disability, treatment is largely guided by physician preference and tradition, due to a lack of data from welldesigned clinical trials. There is increasing interest in conducting trials of novel drugs to treat neonatal seizures, but the unique characteristics of this disorder and patient population require special consideration with regard to trial design. The Critical Path Institute formed a global working group of experts and key stakeholders from academia, the pharmaceutical industry, regulatory agencies, neonatal nurse associations, and patient advocacy groups to develop consensus recommendations for design of clinical trials to treat neonatal seizures. The broad expertise and perspectives of this group were invaluable in developing recommendations addressing: (1) use of neonate-specific adaptive trial designs, (2) inclusion/exclusion criteria, (3) stratification and randomization, (4) statistical analysis, (5) safety monitoring, and (6) definitions of important outcomes. The guidelines are based on available literature and expert consensus, pharmacokinetic analyses, ethical considerations, and parental concerns. These recommendations will ultimately facilitate development of a Master Protocol and design of efficient and successful drug trials to improve the treatment and outcome for this highly vulnerable population

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes
    corecore