2,348 research outputs found

    Staying adiabatic with unknown energy gap

    Full text link
    We introduce an algorithm to perform an optimal adiabatic evolution that operates without an apriori knowledge of the system spectrum. By probing the system gap locally, the algorithm maximizes the evolution speed, thus minimizing the total evolution time. We test the algorithm on the Landau-Zener transition and then apply it on the quantum adiabatic computation of 3-SAT: The result is compatible with an exponential speed-up for up to twenty qubits with respect to classical algorithms. We finally study a possible algorithm improvement by combining it with the quantum Zeno effect.Comment: 4 pages, 4 figure

    Temporäre Colostomie bei chronischer Dysenterie

    Get PDF
    n/

    Microvasospasms After Experimental Subarachnoid Hemorrhage Do Not Depend on Endothelin A Receptors

    Get PDF
    Background and Purpose-Perturbations in cerebral microcirculation (eg, microvasospasms) and reduced neurovascular communication determine outcome after subarachnoid hemorrhage (SAH). ET-1 (endothelin-1) and its receptors have been implicated in the pathophysiology of large artery spasms after SAH;however, their role in the development of microvascular dysfunction is currently unknown. Here, we investigated whether inhibiting ETA (endothelin A) receptors can reduce microvasospasms after experimentally induced SAH. Methods-SAH was induced in male C57BL/6 mice by filament perforation of the middle cerebral artery. Three hours after SAH, a cranial window was prepared and the pial and parenchymal cerebral microcirculation was measured in vivo using two-photon microscopy before, during, and after administration of the ETA receptor inhibitor clazosentan. In separate experiments, the effect of clazosentan treatment on neurological outcome was measured 3 days after SAH. Results: Clazosentan treatment had no effect on the number or severity of SAH-induced cerebral microvasospasms nor did it affect neurological outcome. Conclusions: Our results indicate that ETA receptors, which mediate large artery spasms after SAH, do not seem to play a role in the development of microarterial spasms, suggesting that posthemorrhagic spasms are mediated by distinct mechanisms in large and small cerebral vessels. Given that cerebral microvessel dysfunction is a key factor for outcome after SAH, further research into the mechanisms that underlie posthemorrhagic microvasospasms is urgently needed

    Easy-plane to easy-axis anisotropy switching in a Co(ii) single-ion magnet triggered by the diamagnetic lattice

    Get PDF
    Single ion magnets SIMs with large magnetic anisotropy are promising candidates for realization of single molecule based magnetic memory and qubits. Creation of materials with magnetically uncoupled spatially separated SIMs requires dilution in a diamagnetic matrix. Herein, we report that progressive dilution of paramagnetic Co II by diamagnetic Zn II in the SIM [CoxZn 1 amp; 8722;x piv 2 2 NH2 Py 2], x 1 0 beyond a threshold of 50 reveals an abrupt structural change, where the distorted tetrahedral Zn coordination structure is superimposed on the remaining Co ions, which were initially in a distorted octahedral environment. Dilution induced structure modification switches the magnetic anisotropy from easy plane D 36.7 cm amp; 8722;1 to easy axis type D amp; 8722;23.9 cm amp; 8722;1 , accompanied by a fivefold increase of the magnetic relaxation time at 2 K. Changes of the static and dynamic magnetic properties are monitored by electron paramagnetic resonance spectroscopy and AC susceptibility measurements. Complementary quantum chemical ab initio calculations quantify the influence of structural changes on the electronic structure and the magnetic anisotropy. Thus, magnetic dilution hits two goals at once, the creation of isolated magnetic centres and an improvement of their SIM propertie

    Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector

    Get PDF
    The Large Underground Xenon (LUX) dark matter experiment aims to detect rare low-energy interactions from Weakly Interacting Massive Particles (WIMPs). The radiogenic backgrounds in the LUX detector have been measured and compared with Monte Carlo simulation. Measurements of LUX high-energy data have provided direct constraints on all background sources contributing to the background model. The expected background rate from the background model for the 85.3 day WIMP search run is (2.6±0.2stat±0.4sys)×10−3(2.6\pm0.2_{\textrm{stat}}\pm0.4_{\textrm{sys}})\times10^{-3}~events~keVee−1_{ee}^{-1}~kg−1^{-1}~day−1^{-1} in a 118~kg fiducial volume. The observed background rate is (3.6±0.4stat)×10−3(3.6\pm0.4_{\textrm{stat}})\times10^{-3}~events~keVee−1_{ee}^{-1}~kg−1^{-1}~day−1^{-1}, consistent with model projections. The expectation for the radiogenic background in a subsequent one-year run is presented.Comment: 18 pages, 12 figures / 17 images, submitted to Astropart. Phy
    • …
    corecore