157 research outputs found

    Genomic structure and transcript analysis of the Rapid Alkalinization Factor (RALF) gene family during host-pathogen crosstalk in Fragaria vesca and Fragaria x ananassa strawberry.

    Get PDF
    Rapid Alkalinization Factors (RALFs) are cysteine-rich peptides ubiquitous within plant kingdom. They play multiple roles as hormonal signals in diverse processes, including root elongation, cell growth, pollen tube development, and fertilization. Their involvement in host-pathogen crosstalk as negative regulators of immunity in Arabidopsis has also been recognized. In addition, peptides homologous to RALF are secreted by different fungal pathogens as effectors during early stages of infection. Previous studies have identified nine RALF genes in the diploid strawberry (Fragaria vesca) genome. This work describes the genomic organization of the RALF gene families in commercial octoploid strawberry (Fragaria × ananassa) and the re-annotated genome of F. vesca, and then compares findings with orthologs in Arabidopsis thaliana. We reveal the presence of 15 RALF genes in F. vesca genotype Hawaii 4 and 50 in Fragaria x ananassa cv. Camarosa, showing a non-homogenous localization of genes among the different Fragaria x ananassa subgenomes. Expression analysis of Fragaria x ananassa RALF genes upon infection with Colletotrichum acutatum or Botrytis cinerea showed that FanRALF3-1 was the only fruit RALF gene upregulated after fungal infection. In silico analysis was used to identify distinct pathogen inducible elements upstream of the FanRALF3-1 gene. Agroinfiltration of strawberry fruit with deletion constructs of the FanRALF3-1 promoter identified a 5' region required for FanRALF3-1 expression in fruit, but failed to identify a region responsible for fungal induced expression

    expression of membrane bound human leucocyte antigen g in systemic sclerosis and systemic lupus erythematosus

    Get PDF
    Abstract Human leucocyte antigen-G (HLA-G) is a nonclassical class I major histocompatibility complex (MHC) molecule characterized by complex immunoregulatory and tolerogenic functions. Membrane-bound HLA-G is expressed on the surface of different cell populations in both physiological and pathological conditions. Systemic sclerosis (SSc) is a multisystem autoimmune disease characterized by widespread tissue fibrosis, vascular lesions and immunological alterations. Systemic lupus erythematosus is the prototypic systemic autoimmune disease affecting virtually any organ system, such as skin, joints, central nervous system, or kidneys. In SSc and SLE patients, the membrane expression of HLA-G on monocytes (0.88 ± 1.54 and 0.43 ± 0.75, respectively), CD4+ (0.42 ± 0.78 and 0.63 ± 0.48, respectively), CD8+ (2.65 ± 3.47 and 1.29 ± 1.34, respectively) and CD4+ CD8+ double-positive cells (13.87 ± 15.97 and 3.79 ± 3.11, respectively) was significantly higher than in healthy controls (0.12 ± 0.07; 0.01 ± 0.01; 0.14 ± 0.20 and 0.32 ± 0.38, respectively) (

    The Effectiveness of Behavioral Interventions in Adults with Post-Traumatic Stress Disorder during Clinical Rehabilitation: A Rapid Review

    Get PDF
    Background: This review examined the effectiveness of behavioral interventions for adults with post-traumatic stress disorder (PTSD) triggered by physical injury or medical trauma. It discusses implications in support of rehabilitation management for COVID-19 survivors diagnosed with PTSD. Methods: This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and the Interim Guidance from the Cochrane Rapid Reviews Methods Group. The authors searched for randomized control trials in PubMed, Embase, and CENTRAL databases up to 31 March 2021. Results: Five studies (n = 459) met the inclusion criteria. Each study measured a different comparison of interventions. The certainty of the evidence was judged to be very low for all outcomes. Post-traumatic stress disorder symptom reduction was found to be in favor of trauma-focused cognitive-behavioral therapy, cognitive therapy, and cognitive-behavioral therapy. Cognitive function improvements were observed in favor of the cognitive processing therapy control intervention. Conclusions: Overall, there is uncertainty about whether behavioral interventions are effective in reducing PTSD symptoms and improving functioning and quality of life when the disorder is triggered by a physical or medical trauma rather than a psychological trauma. Further research should investigate their efficacy in the context of rehabilitation management and gather evidence on this populatio

    Functionalization of PU Foams via Inorganic and Organic Coatings to Improve Cell and Tissue Interactions

    Get PDF
    In this work an innovative method to obtain hybrid bio-functional scaffolds has been developed. Polyether urethane (PU) foam scaffolds were synthetized by one-step gas foaming process. PU foams were coated with crosslinked gelatin hydrogel to promote cell adhesion and proliferation for the regeneration of soft tissues (e.g., adipose tissue). PU foams were coated with inorganic coating (i.e., CaPs) to improve the interaction with osteoblasts for bone tissue regeneration. The functionalized 3D PU porous scaffolds have been characterized investigating morphological properties by SEM and microCT, water uptake and coating stability, and compressive mechanical properties. Adipose tissue derived stem cells (ADSCs), endothelial cells (MS1), amnion mesenchymal cells (AMCs) and chorion mesenchymal cells (CMCs) isolated from human placenta were in vitro cultured on the hybrid functionalized 3D scaffolds. Mechanical properties showed elastic modulus ranging between 15.75 ± 2.14 and 22.9 ± 3.1 kPa; in vitro biological studies showed good cell adhesion, proliferation, and differentiation. In particular, compared to the results with uncoated PU, when cells where differentiated into adipocytes, Oil red O staining confirmed a higher presence of lipid droplets; in case of osteoblasts differentiation, inorganic extracellular matrix deposition was evidenced on CaPs coated PU. The obtained results suggest the important role of an adequate coating on the scaffold to stimulate a better interaction with cells, promoting the differentiation into different cells phenotypes

    MiR-494 induces metabolic changes through G6pc targeting and modulates sorafenib response in hepatocellular carcinoma

    Get PDF
    BackgroundMetabolic reprogramming is a well-known marker of cancer, and it represents an early event during hepatocellular carcinoma (HCC) development. The recent approval of several molecular targeted agents has revolutionized the management of advanced HCC patients. Nevertheless, the lack of circulating biomarkers still affects patient stratification to tailored treatments. In this context, there is an urgent need for biomarkers to aid treatment choice and for novel and more effective therapeutic combinations to avoid the development of drug-resistant phenotypes. This study aims to prove the involvement of miR-494 in metabolic reprogramming of HCC, to identify novel miRNA-based therapeutic combinations and to evaluate miR-494 potential as a circulating biomarker.MethodsBioinformatics analysis identified miR-494 metabolic targets. QPCR analysis of glucose 6-phosphatase catalytic subunit (G6pc) was performed in HCC patients and preclinical models. Functional analysis and metabolic assays assessed G6pc targeting and miR-494 involvement in metabolic changes, mitochondrial dysfunction, and ROS production in HCC cells. Live-imaging analysis evaluated the effects of miR-494/G6pc axis in cell growth of HCC cells under stressful conditions. Circulating miR-494 levels were assayed in sorafenib-treated HCC patients and DEN-HCC rats.ResultsMiR-494 induced the metabolic shift of HCC cells toward a glycolytic phenotype through G6pc targeting and HIF-1A pathway activation. MiR-494/G6pc axis played an active role in metabolic plasticity of cancer cells, leading to glycogen and lipid droplets accumulation that favored cell survival under harsh environmental conditions. High miR-494 serum levels associated with sorafenib resistance in preclinical models and in a preliminary cohort of HCC patients. An enhanced anticancer effect was observed for treatment combinations between antagomiR-494 and sorafenib or 2-deoxy-glucose in HCC cells.ConclusionsMiR-494/G6pc axis is critical for the metabolic rewiring of cancer cells and associates with poor prognosis. MiR-494 deserves attention as a candidate biomarker of likelihood of response to sorafenib to be tested in future validation studies. MiR-494 represents a promising therapeutic target for combination strategies with sorafenib or metabolic interference molecules for the treatment of HCC patients who are ineligible for immunotherapy

    In hepatocellular carcinoma miR-221 modulates sorafenib resistance through inhibition of caspase-3\u2013mediated apoptosis

    Get PDF
    Purpose: The aberrant expression of miR-221 is a hallmark of human cancers, including hepatocellular carcinoma (HCC), and its involvement in drug resistance, together with a proved in vivo efficacy of anti-miR-221 molecules, strengthen its role as an attractive target candidate in the oncologic field. The discovery of biomarkers predicting the response to treatments represents a clinical challenge in the personalized treatment era. This study aimed to investigate the possible role of miR-221 as a circulating biomarker in HCC patients undergoing sorafenib treatment as well as to evaluate its contribution to sorafenib resistance in advanced HCC. Experimental Design: A chemically induced HCC rat model and a xenograft mouse model, together with HCC-derived cell lines were employed to analyze miR-221 modulation by Sorafenib treatment. Data from the functional analysis were validated in tissue samples from surgically resected HCCs. The variation of circulating miR-221 levels in relation to Sorafenib treatment were assayed in the animal models and in two independent cohorts of patients with advanced HCC. Results: MiR-221 over-expression was associated with Sorafenib resistance in two HCC animal models and caspase-3 was identified as its target gene, driving miR-221 anti-apoptotic activity following Sorafenib administration. Lower pre-treatment miR-221 serum levels were found in patients subsequently experiencing response to Sorafenib and an increase of circulating miR-221 at the two months assessment was observed in responder patients. Conclusions: MiR-221 might represent a candidate biomarker of likelihood of response to Sorafenib in HCC patients to be tested in future studies. Caspase-3 modulation by miR-221 participates to Sorafenib resistance
    corecore