83 research outputs found

    Experimental study of stratified turbulence forced with columnar dipoles

    No full text
    International audienceWe present a novel experimental setup aimed at producing a forced strongly stratified turbulent flow. The flow is forced by an arena of 12 vortex pair generators in a large tank. The continuous interactions of the randomly produced vortex pairs give rise to a statistically stationary disordered flow in contrast to previous experiments where the stratified turbulence is decaying. The buoyancy frequency N is set to its highest value N = 1.7 rad/s using salt as stratifying agent so that the horizontal Froude number F h = Ω/N is low, while the buoyancy Reynolds number R=ReFh2 , where Re = Ωa 2/ν is the classical Reynolds number, is as high as possible given the experimental constraints (Ω is the maximum angular velocity of the vortices, a their radius and ν the viscosity). PIV measurements show that the flow is not homogeneous in the horizontal plane and is organised into horizontal layers along the vertical. When R is increased, we observe a progressive evolution from the viscosity dominated regime with smooth layers to a regime with small scales superimposed on the layers and for which the vertical Froude number is of order one. The latter regime resembles the strongly stratified turbulent regime with a downscale cascade that has been predicted for large R . However, horizontal second order structure functions do not exhibit a clear inertial range for the largest R achieved R=310 . In addition, the corresponding turbulent buoyancy Reynolds number Rt=P/(νN2) based on an estimation of the injection rate of energy P is only of order unity Rt≃0.4 indicating that only the edge of the strongly stratified turbulent regime has been reached. However, these results suggest that sufficiently large turbulent buoyancy Reynolds numbers, Rt≃10 , could be achieved experimentally by scaling up five times this novel set-up

    Theoretical analysis of the implementation of a quantum phase gate with neutral atoms on atom chips

    Full text link
    We present a detailed, realistic analysis of the implementation of a proposal for a quantum phase gate based on atomic vibrational states, specializing it to neutral rubidium atoms on atom chips. We show how to create a double--well potential with static currents on the atom chips, using for all relevant parameters values that are achieved with present technology. The potential barrier between the two wells can be modified by varying the currents in order to realize a quantum phase gate for qubit states encoded in the atomic external degree of freedom. The gate performance is analyzed through numerical simulations; the operation time is ~10 ms with a performance fidelity above 99.9%. For storage of the state between the operations the qubit state can be transferred efficiently via Raman transitions to two hyperfine states, where its decoherence is strongly inhibited. In addition we discuss the limits imposed by the proximity of the surface to the gate fidelity.Comment: 9 pages, 5 color figure

    Errors in quantum optimal control and strategy for the search of easily implementable control pulses

    Full text link
    We introduce a new approach to assess the error of control problems we aim to optimize. The method offers a strategy to define new control pulses that are not necessarily optimal but still able to yield an error not larger than some fixed a priori threshold, and therefore provide control pulses that might be more amenable for an experimental implementation. The formalism is applied to an exactly solvable model and to the Landau-Zener model, whose optimal control problem is solvable only numerically. The presented method is of importance for applications where a high degree of controllability of the dynamics of quantum systems is required.Comment: 13 pages, 3 figure

    Quantum fluctuations in the image of a Bose gas

    Full text link
    We analyze the information content of density profiles for an ultracold Bose gas of atoms and extract resolution limits for observables contained in these images. Our starting point is density correlations that we compute within the Bogoliubov approximation, taking into account quantum and thermal fluctuations beyond mean-field theory. This provides an approximate way to construct the joint counting statistics of atoms in an array of pixels covering the gas. We derive the Fisher information of an image and the associated Cramer-Rao sensitivity bound for measuring observables contained in the image. We elaborate on our recent study on position measurements of a dark soliton [Negretti et al., Phys. Rev. A 77, 043606 (2008)] where a sensitivity scaling with the atomic density as n^{-3/4} was found. We discuss here a wider class of soliton solutions and present a detailed analysis of the Bogoliubov excitations and the gapless (Goldstone) excitation modes. These fluctuations around the mean field contribute to the noise in the image, and we show how they can actually improve the ability to locate the position of the soliton.Comment: 14 pages, 6 figures, Author list of Ref.[11] has been change

    Impact of dense-water flow over a sloping bottom on open-sea circulation: Laboratory experiments and an Ionian Sea (Mediterranean) example

    Get PDF
    The North Ionian Gyre (NIG) displays prominent inversions on decadal scales. We investigate the role of internal forcing induced by changes in the horizontal pressure gradient due to the varying density of Adriatic Deep Water (AdDW), which spreads into the deep layers of the northern Ionian Sea. In turn, the AdDW density fluctuates according to the circulation of the NIG through a feedback mechanism known as the bimodal oscillating system. We set up laboratory experiments with a two-layer ambient fluid in a circular rotating tank, where densities of 1000 and 1015ĝ€¯kgĝ€¯m-3 characterize the upper and lower layers, respectively. From the potential vorticity evolution during the dense-water outflow from a marginal sea, we analyze the response of the open-sea circulation to the along-slope dense-water flow. In addition, we show some features of the cyclonic and anticyclonic eddies that form in the upper layer over the slope area. We illustrate the outcome of the experiments of varying density and varying discharge rates associated with dense-water injection. When the density is high (1020ĝ€¯kgĝ€¯m-3) and the discharge is large, the kinetic energy of the mean flow is stronger than the eddy kinetic energy. Conversely, when the density is lower (1010ĝ€¯kgĝ€¯m-3) and the discharge is reduced, vortices are more energetic than the mean flow - that is, the eddy kinetic energy is larger than the kinetic energy of the mean flow. In general, over the slope, following the onset of dense-water injection, the cyclonic vorticity associated with current shear develops in the upper layer. The vorticity behaves in a two-layer fashion, thereby becoming anticyclonic in the lower layer of the slope area. Concurrently, over the deep flat-bottom portion of the basin, a large-scale anticyclonic gyre forms in the upper layer extending partly toward a sloping rim. The density record shows the rise of the pycnocline due to the dense-water sinking toward the flat-bottom portion of the tank. We show that the rate of increase in the anticyclonic potential vorticity is proportional to the rate of the rise of the interface, namely to the rate of decrease in the upper-layer thickness (i.e., the upper-layer squeezing). The comparison of laboratory experiments with the Ionian Sea is made for a situation when the sudden switch from cyclonic to anticyclonic basin-wide circulation took place following extremely dense Adriatic water overflow after the harsh winter in 2012. We show how similar the temporal evolution and the vertical structure are in both laboratory and oceanic conditions. The demonstrated similarity further supports the assertion that the wind-stress curl over the Ionian Sea is not of paramount importance in generating basin-wide circulation inversions compared with the internal forcing

    Quantum computing implementations with neutral particles

    Full text link
    We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on Neutral Particles

    Quantum noise in bright soliton matterwave interferometry

    Get PDF
    There has been considerable recent interest in matterwave interferometry with bright solitons in quantum gases with attractive interactions, for applications such as rotation sensing. We model the quantum dynamics of these systems and find that the attractive interactions required for the presence of bright solitons causes quantum phase-diffusion, which severely impairs the sensitivity. We propose a scheme that partially restores the sensitivity, but find that in the case of rotation sensing, it is still better to work in a regime with minimal interactions if possible

    Dark solitons in atomic Bose-Einstein condensates: from theory to experiments

    Full text link
    This review paper presents an overview of the theoretical and experimental progress on the study of matter-wave dark solitons in atomic Bose-Einstein condensates. Upon introducing the general framework, we discuss the statics and dynamics of single and multiple matter-wave dark solitons in the quasi one-dimensional setting, in higher-dimensional settings, as well as in the dimensionality crossover regime. Special attention is paid to the connection between theoretical results, obtained by various analytical approaches, and relevant experimental observations.Comment: 82 pages, 13 figures. To appear in J. Phys. A: Math. Theor

    Campylobacter jejuni Demonstrates Conserved Proteomic and Transcriptomic Responses When Co-cultured With Human INT 407 and Caco-2 Epithelial Cells

    Get PDF
    Major foodborne bacterial pathogens, such as Campylobacter jejuni, have devised complex strategies to establish and foster intestinal infections. For more than two decades, researchers have used immortalized cell lines derived from human intestinal tissue to dissect C. jejuni-host cell interactions. Known from these studies is that C. jejuni virulence is multifactorial, requiring a coordinated response to produce virulence factors that facilitate host cell interactions. This study was initiated to identify C. jejuni proteins that contribute to adaptation to the host cell environment and cellular invasion. We demonstrated that C. jejuni responds to INT 407 and Caco-2 cells in a similar fashion at the cellular and molecular levels. Active protein synthesis was found to be required for C. jejuni to maximally invade these host cells. Proteomic and transcriptomic approaches were then used to define the protein and gene expression profiles of C. jejuni co-cultured with cells. By focusing on those genes showing increased expression by C. jejuni when co-cultured with epithelial cells, we discovered that C. jejuni quickly adapts to co-culture with epithelial cells by synthesizing gene products that enable it to acquire specific amino acids for growth, scavenge for inorganic molecules including iron, resist reactive oxygen/nitrogen species, and promote host cell interactions. Based on these findings, we selected a subset of the genes involved in chemotaxis and the regulation of flagellar assembly and generated C. jejuni deletion mutants for phenotypic analysis. Binding and internalization assays revealed significant differences in the interaction of C. jejuni chemotaxis and flagellar regulatory mutants. The identification of genes involved in C. jejuni adaptation to culture with host cells provides new insights into the infection process
    corecore