94 research outputs found
Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments.
Stable isotope labeling is the state of the art technique for in vivo quantification of lymphocyte kinetics in humans. It has been central to a number of seminal studies, particularly in the context of HIV-1 and leukemia. However, there is a significant discrepancy between lymphocyte proliferation rates estimated in different studies. Notably, deuterated (2)H2-glucose (D2-glucose) labeling studies consistently yield higher estimates of proliferation than deuterated water (D2O) labeling studies. This hampers our understanding of immune function and undermines our confidence in this important technique. Whether these differences are caused by fundamental biochemical differences between the two compounds and/or by methodological differences in the studies is unknown. D2-glucose and D2O labeling experiments have never been performed by the same group under the same experimental conditions; consequently a direct comparison of these two techniques has not been possible. We sought to address this problem. We performed both in vitro and murine in vivo labeling experiments using identical protocols with both D2-glucose and D2O. This showed that intrinsic differences between the two compounds do not cause differences in the proliferation rate estimates, but that estimates made using D2-glucose in vivo were susceptible to difficulties in normalization due to highly variable blood glucose enrichment. Analysis of three published human studies made using D2-glucose and D2O confirmed this problem, particularly in the case of short term D2-glucose labeling. Correcting for these inaccuracies in normalization decreased proliferation rate estimates made using D2-glucose and slightly increased estimates made using D2O; thus bringing the estimates from the two methods significantly closer and highlighting the importance of reliable normalization when using this technique
The effects of ethanol and silymarin treatment during gestation on spatial working memory.
BACKGROUND: Using a rat model we have found that the bioflavonoid silymarin (SY) ameliorates some of the negative consequences of in utero exposure to ethanol (EtOH). In the current study our aim was to determine if spatial working memory (SWM) was impaired in offspring whose mothers were maintained on a liquid diet containing EtOH during different gestational weeks. We also determined if SWM was altered with a concomitant administration of SY with EtOH during specific gestational weeks. METHODS: We provided pregnant Fischer/344 rats with liquid diets containing 35% EtOH derived calories (EDC) during specific weeks of the gestational period. A silymarin/phospholipid compound containing 29.8% silybin co-administered with EtOH was also administered during specific weeks of the gestational period. We tested SWM of the offspring with a radial arm maze on postnatal day (PND) 60. After testing the rats were sacrificed and their brains perfused for later analysis. RESULTS: We observed SWM deficits, as well as a significantly lower brain weight in female offspring born of mothers treated with EtOH during the third week of gestation in comparison to mothers treated during either the first or second weeks of gestation. Rats from any group receiving EtOH in co-administration with SY showed no significant deficits in SWM. CONCLUSION: EtOH treatment during the last week of gestation had the greatest impact on SWM. The addition of SY to the EtOH liquid diet appeared to ameliorate the EtOH-induced learning deficits
LRP1 Receptor Controls Adipogenesis and Is Up-Regulated In Human and Mouse Obese Adipose Tissue
The cell surface low-density lipoprotein receptor-related protein 1, LRP1, plays a major role in lipid metabolism. The question that remains open concerns the function of LRP1 in adipogenesis. Here, we show that LRP1 is highly expressed in murine preadipocytes as well as in primary culture of human adipocytes. Moreover, LRP1 remains abundantly synthesised during mouse and human adipocyte differentiation. We demonstrate that LRP1 silencing in 3T3F442A murine preadipocytes significantly inhibits the expression of PPARγ, HSL and aP2 adipocyte differentiation markers after adipogenesis induction, and leads to lipid-depleted cells. We further show that the absence of lipids in LRP1-silenced preadipocytes is not caused by lipolysis induction. In addition, we provide the first evidences that LRP1 is significantly up-regulated in obese C57BI6/J mouse adipocytes and obese human adipose tissues. Interestingly, silencing of LRP1 in fully-differentiated adipocytes also reduces cellular lipid level and is associated with an increase of basal lipolysis. However, the ability of mature adipocytes to induce lipolysis is independent of LRP1 expression. Altogether, our findings highlight the dual role of LRP1 in the control of adipogenesis and lipid homeostasis, and suggest that LRP1 may be an important therapeutic target in obesity
Altered Insulin Receptor Signalling and β-Cell Cycle Dynamics in Type 2 Diabetes Mellitus
Insulin resistance, reduced β-cell mass, and hyperglucagonemia are consistent features in type 2 diabetes mellitus (T2DM). We used pancreas and islets from humans with T2DM to examine the regulation of insulin signaling and cell-cycle control of islet cells. We observed reduced β-cell mass and increased α-cell mass in the Type 2 diabetic pancreas. Confocal microscopy, real-time PCR and western blotting analyses revealed increased expression of PCNA and down-regulation of p27-Kip1 and altered expression of insulin receptors, insulin receptor substrate-2 and phosphorylated BAD. To investigate the mechanisms underlying these findings, we examined a mouse model of insulin resistance in β-cells – which also exhibits reduced β-cell mass, the β-cell-specific insulin receptor knockout (βIRKO). Freshly isolated islets and β-cell lines derived from βIRKO mice exhibited poor cell-cycle progression, nuclear restriction of FoxO1 and reduced expression of cell-cycle proteins favoring growth arrest. Re-expression of insulin receptors in βIRKO β-cells reversed the defects and promoted cell cycle progression and proliferation implying a role for insulin-signaling in β-cell growth. These data provide evidence that human β- and α-cells can enter the cell-cycle, but proliferation of β-cells in T2DM fails due to G1-to-S phase arrest secondary to defective insulin signaling. Activation of insulin signaling, FoxO1 and proteins in β-cell-cycle progression are attractive therapeutic targets to enhance β-cell regeneration in the treatment of T2DM
Rapid Cellular Turnover in Adipose Tissue
It was recently shown that cellular turnover occurs within the human adipocyte population. Through three independent experimental approaches — dilution of an inducible histone 2B-green fluorescent protein (H2BGFP), labeling with the cell cycle marker Ki67 and incorporation of BrdU — we characterized the degree of cellular turnover in murine adipose tissue. We observed rapid turnover of the adipocyte population, finding that 4.8% of preadipocytes are replicating at any time and that between 1–5% of adipocytes are replaced each day. In light of these findings, we suggest that adipose tissue turnover represents a possible new avenue of therapeutic intervention against obesity
Positive Regulation of DNA Double Strand Break Repair Activity during Differentiation of Long Life Span Cells: The Example of Adipogenesis
Little information is available on the ability of terminally differentiated cells to efficiently repair DNA double strand breaks (DSBs), and one might reasonably speculate that efficient DNA repair of these threatening DNA lesions, is needed in cells of long life span with no or limited regeneration from precursor. Few tissues are available besides neurons that allow the study of DNA DSBs repair activity in very long-lived cells. Adipocytes represent a suitable model since it is generally admitted that there is a very slow turnover of adipocytes in adult. Using both Pulse Field Gel Electrophoresis (PFGE) and the disappearance of the phosphorylated form of the histone variant H2AX, we demonstrated that the ability to repair DSBs is increased during adipocyte differentiation using the murine pre-adipocyte cell line, 3T3F442A. In mammalian cells, DSBs are mainly repaired by the non-homologous end-joining pathway (NHEJ) that relies on the DNA dependent protein kinase (DNA-PK) activity. During the first 24 h following the commitment into adipogenesis, we show an increase in the expression and activity of the catalytic sub-unit of the DNA-PK complex, DNA-PKcs. The increased in DNA DSBs repair activity observed in adipocytes was due to the increase in DNA-PK activity as shown by the use of DNA-PK inhibitor or sub-clones of 3T3F442A deficient in DNA-PKcs using long term RNA interference. Interestingly, the up-regulation of DNA-PK does not regulate the differentiation program itself. Finally, similar positive regulation of DNA-PKcs expression and activity was observed during differentiation of primary culture of pre-adipocytes isolated from human sub-cutaneous adipose tissue
ProsCan for Couples: Randomised controlled trial of a couples-based sexuality intervention for men with localised prostate cancer who receive radical prostatectomy
Background: Prostate cancer is the most common male cancer in the Western world. The most substantial long term morbidity from this cancer is sexual dysfunction with consequent adverse changes in couple and intimate relationships. Research to date has not identified an effective way to improve sexual and psychosocial adjustment for both men with prostate cancer and their partners. As well, the efficacy and cost effectiveness of peer counselling as opposed to professional models of service delivery has not yet been empirically tested. This paper presents the design of a three arm randomised controlled trial (peer vs. nurse counselling vs. usual care) that will evaluate the efficacy of two couples-based sexuality interventions (ProsCan for Couples: Peer support vs. nurse counselling) on men's and women's sexual and psychosocial adjustment after surgical treatment for localised prostate cancer; in addition to cost-effectiveness. Methods/design: Seventy couples per condition (210 couples in total) will be recruited after diagnosis and before treatment through urology private practices and hospital outpatient clinics and randomised to (1) usual care; (2) eight sessions of peer-delivered telephone support with DVD education; and (3) eight sessions of oncology nurse-delivered telephone counselling with DVD education. Two intervention sessions will be delivered before surgery and six over the six months post-surgery. The intervention will utilise a cognitive behavioural approach along with couple relationship education focussed on relationship enhancement and helping the couple to conjointly manage the stresses of cancer diagnosis and treatment. Participants will be assessed at baseline (before surgery) and 3, 6 and 12 months post-surgery. Outcome measures include: Sexual adjustment; unmet sexuality supportive care needs; attitudes to sexual help seeking; psychological adjustment; benefit finding and quality of life. Discussion: The study will provide recommendations about the efficacy of peer support vs. nurse counselling to facilitate better sexual and couple adjustment after prostate cancer as well as recommendations on whether the interventions represent efficient health service delivery
Functional redundancy between Apc and Apc2 regulates tissue homeostasis and prevents tumorigenesis in murine mammary epithelium
Aberrant Wnt signaling within breast cancer is associated with poor prognosis, but regulation of this pathway in breast tissue remains poorly understood and the consequences of immediate or long-term dysregulation remain elusive. The exact contribution of the Wnt-regulating proteins adenomatous polyposis coli (APC) and APC2 in the pathogenesis of human breast cancer are ill-defined, but our analysis of publically available array data sets indicates that tumors with concomitant low expression of both proteins occurs more frequently in the ‘triple negative’ phenotype, which is a subtype of breast cancer with particularly poor prognosis. We have used mouse transgenics to delete Apc and/or Apc2 from mouse mammary epithelium to elucidate the significance of these proteins in mammary homeostasis and delineate their influences on Wnt signaling and tumorigenesis. Loss of either protein alone failed to affect Wnt signaling levels or tissue homeostasis. Strikingly, concomitant loss led to local disruption of β-catenin status, disruption in epithelial integrity, cohesion and polarity, increased cell division and a distinctive form of ductal hyperplasia with ‘squamoid’ ghost cell nodules in young animals. Upon aging, the development of Wnt activated mammary carcinomas with squamous differentiation was accompanied by a significantly reduced survival. This novel Wnt-driven mammary tumor model highlights the importance of functional redundancies existing between the Apc proteins both in normal homeostasis and in tumorigenesis
Sexual Conflict and Sexually Antagonistic Coevolution in an Annual Plant
BACKGROUND: Sexual conflict theory predicts sexually antagonistic coevolution of reproductive traits driven by conflicting evolutionary interests of two reproducing individuals. Most studies of the evolutionary consequences of sexual conflicts have, however, to date collectively investigated only a few species. In this study we used the annual herb Collinsia heterophylla to experimentally test the existence and evolutionary consequences of a potential sexual conflict over onset of stigma receptivity. METHODOLOGY/PRINCIPAL FINDINGS: We conducted crosses within and between four greenhouse-grown populations originating from two regions. Our experimental setup allowed us to investigate male-female interactions at three levels of geographic distances between interacting individuals. Both recipient and pollen donor identity affected onset of stigma receptivity within populations, confirming previous results that some pollen donors can induce stigma receptivity. We also found that donors were generally better at inducing stigma receptivity following pollen deposition on stigmas of recipients from another population than their own, especially within a region. On the other hand, we found that donors did worse at inducing stigma receptivity in crosses between regions. Interestingly, recipient costs in terms of lowered seed number after early fertilisation followed the same pattern: the cost was apparent only if the pollen donor belonged to the same region as the recipient. CONCLUSION/SIGNIFICANCE: Our results indicate that recipients are released from the cost of interacting with local pollen donors when crossed with donors from a more distant location, a pattern consistent with a history of sexually antagonistic coevolution within populations. Accordingly, sexual conflicts may have important evolutionary consequences also in plants
- …