120 research outputs found

    Quantifying water quality improvements through use of precision herbicide application technologies in a dry-tropical, furrow-irrigated cropping system

    Get PDF
    This study compared water quality effects of using precision herbicide application technologies and traditional spraying approaches across several regulated 'priority' and alternative preand post-emergent herbicides in a northern Australian cane farming system. Use of herbicide banding spray technologies resulted in pre-emergent herbicide load reductions, extending substantially beyond simple proportionate decreases in the amount of herbicide ingredient applied to paddocks. Aquatic risk assessment from resultant chemical mixtures leaving paddocks, and upscaled to local catchment concentrations, highlighted that precision application technologies could markedly reduce the ecological risk of pre-emergent herbicides. These risk reductions were, however, often complicated by the additional toxicity of post-emergent herbicides in mixtures, some associated with the adoption of band-spraying weed treatments. While the currently regulated priority herbicide, diuron, posed the greatest risk to the environment, alternative herbicides could still pose significant environmental risks, although these relative risks were lower at more ecologically relevant concentrations, typically found in the local freshwater ecosystems. Results underline the need for a carefully considered approach to integrating alternative herbicides and precision application technologies into improved weed management by irrigating cane farmers. Recent government changes to the appraisal of water quality improvement progress, from load-based to ecosystem-based targets, involving a much broader suite of herbicides, also appear likely to complicate assessment of the environmental impacts of practice change adoption for the industry

    Database of RNA binding protein expression and disease dynamics (READ DB)

    Get PDF
    RNA Binding Protein (RBP) Expression and Disease Dynamics database (READ DB) is a non-redundant, curated database of human RBPs. RBPs curated from different experimental studies are reported with their annotation, tissue-wide RNA and protein expression levels, evolutionary conservation, disease associations, protein-protein interactions, microRNA predictions, their known RNA recognition sequence motifs as well as predicted binding targets and associated functional themes, providing a one stop portal for understanding the expression, evolutionary trajectories and disease dynamics of RBPs in the context of post-transcriptional regulatory networks

    Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks

    Get PDF
    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional network

    The human RBPome: From genes and proteins to human disease

    Get PDF
    RNA binding proteins (RBPs) play a central role in mediating post transcriptional regulation of genes. However less is understood about them and their regulatory mechanisms. In this study, we construct a catalogue of 1344 experimentally confirmed RBPs. The domain architecture of RBPs enabled us to classify them into three groups ā€” Classical (29%), Non-classical (19%) and unclassified (52%). A higher percentage of proteins with unclassified domains reveals the presence of various uncharacterised motifs that can potentially bind RNA. RBPs were found to be highly disordered compared to Non-RBPs (p < 2.2e-16, Fisher's exact test), suggestive of a dynamic regulatory role of RBPs in cellular signalling and homeostasis. Evolutionary analysis in 62 different species showed that RBPs are highly conserved compared to Non-RBPs (p < 2.2e-16, Wilcox-test), reflecting the conservation of various biological processes like mRNA splicing and ribosome biogenesis. The expression patterns of RBPs from human proteome map revealed that ~ 40% of them are ubiquitously expressed and ~ 60% are tissue-specific. RBPs were also seen to be highly associated with several neurological disorders, cancer and inflammatory diseases. Anatomical contexts like B cells, T-cells, foetal liver and foetal brain were found to be strongly enriched for RBPs, implying a prominent role of RBPs in immune responses and different developmental stages. The catalogue and meta-analysis presented here should form a foundation for furthering our understanding of RBPs and the cellular networks they control, in years to come. This article is part of a Special Issue entitled: Proteomics in India

    Uncovering RNA binding proteins associated with age and gender during liver maturation

    Get PDF
    In the present study, we perform an association analysis focusing on the expression changes of 1344 RNA Binding proteins (RBPs) as a function of age and gender in human liver. We identify 88 and 45 RBPs to be significantly associated with age and gender respectively. Experimental verification of several of the predicted associations in mice confirmed our findings. Our results suggest that a small fraction of the gender-associated RBPs (~40%) are expressed higher in males than females. Altogether, these observations show that several of these RBPs are important and conserved regulators in maintaining liver function. Further analysis of the protein interaction network of RBPs associated with age and gender based on the centrality measures like degree, betweenness and closeness revealed that several of these RBPs might be prominent players in aging liver and impart gender specific alterations in gene expression via the formation of protein complexes. Indeed, both age and gender-associated RBPs in liver were found to show significantly higher clustering coefficients and network centrality measures compared to non-associated RBPs. The compendium of RBPs and this study will help us gain insight into the role of post-transcriptional regulatory molecules in aging and gender specific expression of genes

    Mutational landscape of RNA-binding proteins in human cancers

    Get PDF
    RNA Binding Proteins (RBPs) are a class of post-transcriptional regulatory molecules which are increasingly documented to be dysfunctional in cancer genomes. However, our current understanding of these alterations is limited. Here, we delineate the mutational landscape of āˆ¼1300 RBPs in āˆ¼6000 cancer genomes. Our analysis revealed that RBPs have an average of āˆ¼3 mutations per Mb across 26 cancer types. We identified 281 RBPs to be enriched for mutations (GEMs) in at least one cancer type. GEM RBPs were found to undergo frequent frameshift and inframe deletions as well as missense, nonsense and silent mutations when compared to those that are not enriched for mutations. Functional analysis of these RBPs revealed the enrichment of pathways associated with apoptosis, splicing and translation. Using the OncodriveFM framework, we also identified more than 200 candidate driver RBPs that were found to accumulate functionally impactful mutations in at least one cancer. Expression levels of 15% of these driver RBPs exhibited significant difference, when transcriptome groups with and without deleterious mutations were compared. Functional interaction network of the driver RBPs revealed the enrichment of spliceosomal machinery, suggesting a plausible mechanism for tumorogenesis while network analysis of the protein interactions between RBPs unambiguously revealed the higher degree, betweenness and closeness centrality for driver RBPs compared to non-drivers. Analysis to reveal cancer-specific Ribonucleoprotein (RNP) mutational hotspots showed extensive rewiring even among common drivers between cancer types. Knockdown experiments on pan-cancer drivers such as SF3B1 and PRPF8 in breast cancer cell lines, revealed cancer subtype specific functions like selective stem cell features, indicating a plausible means for RBPs to mediate cancer-specific phenotypes. Hence, this study would form a foundation to uncover the contribution of the mutational spectrum of RBPs in dysregulating the post-transcriptional regulatory networks in different cancer types

    Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways

    Get PDF
    The epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) control the epithelial-to-mesenchymal transition (EMT) splicing program in cancer. However, their role in breast cancer recurrence is unclear. In this study, we report that high levels of ESRP1, but not ESRP2, are associated with poor prognosis in estrogen receptor positive (ER+) breast tumors. Knockdown of ESRP1 in endocrine-resistant breast cancer models decreases growth significantly and alters the EMT splicing signature, which we confirm using TCGA SpliceSeq data of ER+ BRCA tumors. However, these changes are not accompanied by the development of a mesenchymal phenotype or a change in key EMT-transcription factors. In tamoxifen-resistant cells, knockdown of ESRP1 affects lipid metabolism and oxidoreductase processes, resulting in the decreased expression of fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), and phosphoglycerate dehydrogenase (PHGDH) at both the mRNA and protein levels. Furthermore, ESRP1 knockdown increases the basal respiration and spare respiration capacity. This study reports a novel role for ESRP1 that could form the basis for the prevention of tamoxifen resistance in ER+ breast cancer
    • ā€¦
    corecore