208 research outputs found

    Critical role for scaffolding adapter Gab2 in FcγR-mediated phagocytosis

    Get PDF
    Grb2-associated binder 2 (Gab2), a member of the Dos/Gab subfamily scaffolding molecules, plays important roles in regulating the growth, differentiation, and function of many hematopoietic cell types. In this paper, we reveal a novel function of Gab2 in Fcγ receptor (FcγR)–initiated phagocytosis in macrophages. Upon FcγR activation, Gab2 becomes tyrosyl phosphorylated and associated with p85, the regulatory subunit of phosphoinositide 3-kinase (PI3K), and the protein–tyrosine phosphatidylinositol Shp-2. FcγR-mediated phagocytosis is severely impaired in bone marrow–derived macrophages from Gab2−/− mice. The defect in phagocytosis correlates with decreased FcγR-evoked activation of Akt, a downstream target of PI3K. Using confocal fluorescence microscopy, we find that Gab2 is recruited to the nascent phagosome, where de novo PI3K lipid production occurs. Gab2 recruitment requires the pleckstrin homology domain of Gab2 and is sensitive to treatment with the PI3K inhibitor wortmannin. The Grb2 binding site on Gab2 also plays an auxiliary role in recruitment to the phagosome. Because PI3K activity is required for FcγR-mediated phagocytosis, our results indicate that Gab2 acts as a key component of FcγR-mediated phagocytosis, most likely by amplifying PI3K signaling in the nascent phagosome

    Thermally Activated Magnetization and Resistance Decay during Near Ambient Temperature Aging of Co Nanoflakes in a Confining Semi-metallic Environment

    Full text link
    We report the observation of magnetic and resistive aging in a self assembled nanoparticle system produced in a multilayer Co/Sb sandwich. The aging decays are characterized by an initial slow decay followed by a more rapid decay in both the magnetization and resistance. The decays are large accounting for almost 70% of the magnetization and almost 40% of the resistance for samples deposited at 35 oC^oC. For samples deposited at 50 oC^oC the magnetization decay accounts for 50\sim 50% of the magnetization and 50% of the resistance. During the more rapid part of the decay, the concavity of the slope of the decay changes sign and this inflection point can be used to provide a characteristic time. The characteristic time is strongly and systematically temperature dependent, ranging from 1\sim1x102s10^2 s at 400K to 3\sim3x105s10^5 s at 320K in samples deposited at 35oC35 ^oC. Samples deposited at 50 oC^oC displayed a 7-8 fold increase in the characteristic time (compared to the 35oC35 ^oC samples) for a given aging temperature, indicating that this timescale may be tunable. Both the temperature scale and time scales are in potentially useful regimes. Pre-Aging, Scanning Tunneling Microscopy (STM) reveals that the Co forms in nanoscale flakes. During aging the nanoflakes melt and migrate into each other in an anisotropic fashion forming elongated Co nanowires. This aging behavior occurs within a confined environment of the enveloping Sb layers. The relationship between the characteristic time and aging temperature fits an Arrhenius law indicating activated dynamics

    Diverse Levels of Sequence Selectivity and Catalytic Efficiency of Protein-Tyrosine Phosphatases

    Get PDF
    The sequence selectivity of 14 classical protein-tyrosine phosphatases (PTPs) (PTPRA, PTPRB, PTPRC, PTPRD, PTPRO, PTP1B, SHP-1, SHP-2, HePTP, PTP-PEST, TCPTP, PTPH1, PTPD1, and PTPD2) was systematically profiled by screening their catalytic domains against combinatorial peptide libraries. All of the PTPs exhibit similar preference for pY peptides rich in acidic amino acids and disfavor positively charged sequences, but differ vastly in their degrees of preference/disfavor. Some PTPs (PTP-PEST, SHP-1, and SHP-2) are highly selective for acidic over basic (or neutral) peptides (by >105-fold), whereas others (PTPRA and PTPRD) show no to little sequence selectivity. PTPs also have diverse intrinsic catalytic efficiencies (kcat/KM values against optimal substrates), which differ by >105-fold due to different kcat and/or KM values. Moreover, PTPs show little positional preference for the acidic residues relative to the pY residue. Mutation of Arg47 of PTP1B, which is located near the pY-1 and pY-2 residues of a bound substrate, decreased the enzymatic activity by 3–18-fold toward all pY substrates containing acidic residues anywhere within the pY-6 to pY+5 region. Similarly, mutation of Arg24, which is situated near the C-terminus of a bound substrate, adversely affected the kinetic activity of all acidic substrates. A co-crystal structure of PTP1B bound with a nephrin pY1193 peptide suggests that Arg24 engages in electrostatic interactions with acidic residues at the pY+1, pY+2, and likely other positions. These results suggest that long-range electrostatic interactions between positively charged residues near the PTP active site and acidic residues on pY substrates allow a PTP to bind acidic substrates with similar affinities and the varying levels of preference for acidic sequences by different PTPs are likely caused by the different electrostatic potentials near their active sites. The implications of the varying sequence selectivity and intrinsic catalytic activities with respect to PTP in vivo substrate specificity and biological functions are discussed

    TNF-stimulated MAP kinase activation mediated by a Rho family GTPase signaling pathway

    Get PDF
    The biological response to tumor necrosis factor (TNF) involves activation of MAP kinases. Here we report a mechanism of MAP kinase activation by TNF that is mediated by the Rho GTPase family members Rac/Cdc42. This signaling pathway requires Src-dependent activation of the guanosine nucleotide exchange factor Vav, activation of Rac/Cdc42, and the engagement of the Rac/Cdc42 interaction site (CRIB motif) on mixed-lineage protein kinases (MLKs). We show that this pathway is essential for full MAP kinase activation during the response to TNF. Moreover, this MLK pathway contributes to inflammation in vivo

    An Shp2/SFK/Ras/Erk Signaling Pathway Controls Trophoblast Stem Cell Survival

    Get PDF
    SummaryLittle is known about how growth factors control tissue stem cell survival and proliferation. We analyzed mice with a null mutation of Shp2 (Ptpn11), a key component of receptor tyrosine kinase signaling. Null embryos die peri-implantation, much earlier than mice that express an Shp2 truncation. Shp2 null blastocysts initially develop normally, but they subsequently exhibit inner cell mass death, diminished numbers of trophoblast giant cells, and failure to yield trophoblast stem (TS) cell lines. Molecular markers reveal that the trophoblast lineage, which requires fibroblast growth factor-4 (FGF4), is specified but fails to expand normally. Moreover, deletion of Shp2 in TS cells causes rapid apoptosis. We show that Shp2 is required for FGF4-evoked activation of the Src/Ras/Erk pathway that culminates in phosphorylation and destabilization of the proapoptotic protein Bim. Bim depletion substantially blocks apoptosis and significantly restores Shp2 null TS cell proliferation, thereby establishing a key mechanism by which FGF4 controls stem cell survival

    Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis.

    Get PDF
    Miner1 is a redox-active 2Fe2S cluster protein. Mutations in Miner1 result in Wolfram Syndrome, a metabolic disease associated with diabetes, blindness, deafness, and a shortened lifespan. Embryonic fibroblasts from Miner1(-/-) mice displayed ER stress and showed hallmarks of the unfolded protein response. In addition, loss of Miner1 caused a depletion of ER Ca(2+) stores, a dramatic increase in mitochondrial Ca(2+) load, increased reactive oxygen and nitrogen species, an increase in the GSSG/GSH and NAD(+)/NADH ratios, and an increase in the ADP/ATP ratio consistent with enhanced ATP utilization. Furthermore, mitochondria in fibroblasts lacking Miner1 displayed ultrastructural alterations, such as increased cristae density and punctate morphology, and an increase in O2 consumption. Treatment with the sulphydryl anti-oxidant N-acetylcysteine reversed the abnormalities in the Miner1 deficient cells, suggesting that sulphydryl reducing agents should be explored as a treatment for this rare genetic disease

    TCPTP-deficiency in muscle does not alter insulin signalling and glucose homeostasis.

    Get PDF
    Aims/Hypothesis: Insulin activates the insulin receptor (IR) protein tyrosine kinase and downstream phosphatidylinositol-3-kinase (PI3K)/Akt signalling in muscle to promote glucose uptake. The IR can serve as a substrate for the protein tyrosine phosphatases (PTP) 1B and TCPTP, which share a striking 74% sequence identity in their catalytic domains. PTP1B is a validated therapeutic target for the alleviation of insulin resistance in type 2 diabetes. PTP1B dephosphorylates the IR in liver and muscle to regulate glucose homeostasis, whereas TCPTP regulates IR signalling and gluconeogenesis in the liver. In this study we have assessed for the first time the role of TCPTP in the regulation of IR signalling in muscle. Methods: We generated muscle-specific TCPTP-deficient (MCK-Cre;Ptpn2lox/lox) mice and assessed the impact on glucose homeostasis and muscle IR signalling in chow versus high fat fed mice. Results: Blood glucose and insulin levels, insulin and glucose tolerances and insulininduced muscle IR activation and downstream PI3K/Akt signalling remained unaltered in chow fe

    PTP-1B is an essential positive regulator of platelet integrin signaling

    Get PDF
    Outside-in integrin αIIbβ3 signaling is required for normal platelet thrombus formation and is triggered by c-Src activation through an unknown mechanism. In this study, we demonstrate an essential role for protein–tyrosine phosphatase (PTP)–1B in this process. In resting platelets, c-Src forms a complex with αIIbβ3 and Csk, which phosphorylates c-Src tyrosine 529 to maintain c-Src autoinhibition. Fibrinogen binding to αIIbβ3 triggers PTP-1B recruitment to the αIIbβ3–c-Src–Csk complex in a manner that is dependent on c-Src and specific tyrosine (tyrosine 152 and 153) and proline (proline 309 and 310) residues in PTP-1B. Studies of PTP-1B–deficient mouse platelets indicate that PTP-1B is required for fibrinogen-dependent Csk dissociation from αIIbβ3, dephosphorylation of c-Src tyrosine 529, and c-Src activation. Furthermore, PTP-1B–deficient platelets are defective in outside-in αIIbβ3 signaling in vitro as manifested by poor spreading on fibrinogen and decreased clot retraction, and they exhibit ineffective Ca2+ signaling and thrombus formation in vivo. Thus, PTP-1B is an essential positive regulator of the initiation of outside-in αIIbβ3 signaling in platelets
    corecore