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Summary

Little is known about how growth factors control tissue
stem cell survival and proliferation. We analyzed mice

with a null mutation of Shp2 (Ptpn11), a key component
of receptor tyrosine kinase signaling. Null embryos die

peri-implantation, much earlier than mice that express
an Shp2 truncation. Shp2 null blastocysts initially de-

velop normally, but they subsequently exhibit inner
cell mass death, diminished numbers of trophoblast gi-

ant cells, and failure to yield trophoblast stem (TS) cell
lines. Molecular markers reveal that the trophoblast lin-

eage, which requires fibroblast growth factor-4 (FGF4),
is specified but fails to expand normally. Moreover, de-

letion of Shp2 in TS cells causes rapid apoptosis. We
show that Shp2 is required for FGF4-evoked activation

of the Src/Ras/Erk pathway that culminates in phos-
phorylation and destabilization of the proapoptotic

protein Bim. Bim depletion substantially blocks apo-
ptosis and significantly restores Shp2 null TS cell pro-

liferation, thereby establishing a key mechanism by
which FGF4 controls stem cell survival.

Introduction

Much has been learned about growth factor and cyto-
kine signaling in various differentiated cell types. In con-
trast, because stem cells are few in number and typically
cannot be expanded substantially in cell culture, less is
known about the mechanisms controlling their survival,
proliferation, and differentiation. Understanding such
pathways in molecular detail might provide clues as to
how normal stem cells can be mobilized for therapeutic
purposes, as well as insight into how these cells are per-
turbed in pathological states such as degenerative dis-
ease or neoplasia.

During murine embryogenesis, the earliest cellular dif-
ferentiation events occur at the blastocyst stage (Cross,
2000; Rossant and Cross, 2001). Blastocysts initially
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comprise inner cell mass (ICM) cells, which lie on one
side of a cystic cavity, and an enveloping trophectoder-
mal layer. Subsequently, the ICM differentiates into the
epiblast and primitive endoderm, while trophectoderm
gives rise to the extraembryonic ectoderm, ectoplacen-
tal cone, and primary and secondary trophoblast giant
(TG) cells. The progenitors for differentiated trophoblast
derivatives are supplied by trophoblast stem (TS) cells,
which reside above the ICM (Rossant, 2001; Tanaka
et al., 1998). TS cell maintenance requires ICM-derived
signals, one of which is fibroblast growth factor-4
(FGF4) (Feldman et al., 1995; Goldin and Papaioannou,
2003; Tanaka et al., 1998). The essential role of the
FGF4 signaling pathway is evinced by the defective tro-
phoblast development and peri-implantation lethality in
embryos lacking various pathway components (Arman
et al., 1998; Feldman et al., 1995; Gotoh et al., 2005).

Unlike most other tissue stem cells, TS cells are easily
obtained from blastocysts. Using established culture
conditions, which include the addition of FGF4, heparin,
and conditioned medium from appropriate feeder cells,
TS cells self-renew and expand to numbers sufficient for
biochemical analysis, while retaining the ability to differ-
entiate into TG cells (Rossant, 2001; Tanaka et al., 1998).
Blastocysts lacking FRS2, a scaffolding adaptor that
mediates FGFR signaling (Gotoh et al., 2005), fail to yield
TS cell lines. Despite the biochemical tractability of this
purified stem cell system, the detailed cellular and mo-
lecular mechanisms by which FGF4 signals exert their
biological effects on TS cells have not been defined.

Shp2, encoded by the Ptpn11 gene, is a ubiquitously
expressed, nonreceptor protein-tyrosine phosphatase
(PTP) characterized by two N-terminal Src homology-2
(SH2) domains (N- and C-SH2 domains, respectively)
(Feng, 1999; Neel et al., 2003). Multiple studies of differ-
entiated cells have established that Shp2 is required for
normal activation of the Ras/Erk pathway downstream
of most, if not all, receptor tyrosine kinases (Feng,
1999; Neel et al., 2003). The key targets that Shp2 de-
phosphorylates to promote Ras/Erk activation have re-
mained controversial. Shp2 is required for dephosphor-
ylation of the inhibitory C-terminal tyrosines of Src family
kinases (SFK) and, consequently, for SFK activation. Yet
Shp2 does not dephosphorylate these sites directly, but
instead targets phosphotyrosines on targeting proteins
(e.g., Pag/Cbp, paxillin) that bind the SH2 domain of
the kinase Csk, which phosphorylates SFK inhibitory ty-
rosines (Ren et al., 2004; Zhang et al., 2004). Others have
reported that Shp2 dephosphorylates sites on receptors
(Agazie and Hayman, 2003; Klinghoffer and Kazlauskas,
1995) or adapters (Montagner et al., 2005) that bind p120
RasGap, thereby reducing RasGap activity at the
plasma membrane. Sprouty proteins, a group of poorly
understood Ras inhibitors, also are reputed Shp2 tar-
gets (Hanafusa et al., 2004). Shp2 has receptor- and/or
cell context-dependent effects on PI3K/Akt activation
(Gotoh et al., 2004; Ivins Zito et al., 2004; Zhang et al.,
2002), Rho family small G proteins (Kontaridis et al.,
2004; Schoenwaelder et al., 2000), and possibly other
downstream pathways (Neel et al., 2003).
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Not surprisingly, Shp2 is required for vertebrate devel-
opment. Dominant-negative Shp2 mutants disrupt
Xenopus gastrulation and impair FGF-induced Erk acti-
vation, mesoderm induction, and elongation in ectoder-
mal explants (O’Reilly and Neel, 1998; Tang et al., 1995).
Two targeted mutations in Shp2 implicated Shp2 in mu-
rine embryogenesis (Arrandale et al., 1996; Saxton et al.,
1997). Homozygous deletion of exon 3 (Ex32/2) causes
embryonic lethality at E8.5–E10.5; mutant embryos ex-
hibit a range of abnormalities that can be explained by
defective gastrulation (Saxton et al., 1997; Saxton and
Pawson, 1999). However, splicing around the targeted
exon 3 results in the expression of a mutant Shp2 protein
that lacks most of its N-SH2 domain, but retains the rest
of the molecule (Saxton et al., 1997). Because Shp2 cat-
alytic activity is inhibited by intramolecular interaction
between the N-SH2 and PTP domains (Barford and
Neel, 1998; Hof et al., 1998; Neel et al., 2003), Ex32/2

cells actually have increased total Shp2 activity (Qu
et al., 1997; Saxton et al., 1997). As this truncated protein
also fails to target correctly (because of its missing
N-SH2 domain) (Shi et al., 2000), some aspects of the
Ex32/2 phenotype could reflect abnormal gain of func-
tion (neomorphism). Mice homozygous for exon 2 dele-
tion (Ex22/2) also are embryonic lethal, although their
phenotype has not been studied in detail (Arrandale
et al., 1996). Whereas the Ex2 allele was reported to be
protein null, it too encodes an (different) N-terminal trun-
cation mutant of Shp2 (see below).

To clarify the role of Shp2 in mammalian embryogen-
esis, we generated and characterized a null mutation in
the mouse Ptpn11 gene. Embryos homozygous for this
new mutation (Ex2*2/2) die peri-implantation, signifi-
cantly earlier than Ex32/2 embryos, and fail to give rise
to TS cell lines. By using an inducible allele of Shp2
and acute, Cre recombinase-mediated excision, we
find that Shp2 is required to prevent TS cell apoptosis,
and that it acts downstream of the FGFR in a Src/Ras/
Erk pathway that promotes phosphorylation and desta-
bilization of the proapoptotic BH3-only protein Bim.

Results

Earlier Lethality of Shp2 Null Mice

Ex22/2 mice reportedly lack Shp2 protein, based on im-
munoblot analyses with an antibody against the Shp2 N
terminus (Arrandale et al., 1996). However, as for the Ex3
allele, splicing around the Ex2 allele generates a trun-
cated species detected by RT-PCR and immunoblotting
with anti-C-terminal Shp2 antibodies (data not shown,
but see below). We generated a new targeting construct
that introduces a strong splice acceptor site before the
b-galactosidase gene, anticipating that the splice accep-
tor site would ‘‘capture’’ initiated transcripts (Figure 1A),
and introduced this construct into embryonic stem (ES)
cells. Homologous recombinants were identified by
PCR, confirmed by Southern blotting, and injected into
blastocysts to obtain germline transmission (Figures
1B and 1C). In contrast to Ex32/2 fibroblasts and various
tissues from Ex2+/2 mice, which expressed truncated
Shp2 species, Ex2*+/2 ES cells (data not shown) and tis-
sues (Figure 1C) expressed only full-length Shp2, at
w50% wild-type (wt) levels. Thus, Ex2* is a null allele.
Shp2 Ex2*+/2 mice were obtained at Mendelian fre-
quency, and they were apparently normal and fertile.
In contrast, no Ex2*2/2 progeny were observed in an
F1 Ex2*+/2 intercross (Table 1); hence, Ex2*2/2, like
Ex22/2 and Ex32/2, mice are embryonic lethal. Timed
matings revealed that although Ex2*2/2 blastocysts
(E3.5) were obtained at Mendelian frequency, few
Ex2*2/2 embryos could be identified (by PCR) at E6.5
or E7.5 (Table 1). The few implanted embryos were
poorly organized, extensively necrotic, and showed no
evidence of appropriate tissue differentiation (Fig-
ure 1D). In contrast, Ex32/2 embryos implant and com-
mence gastrulation (Saxton et al., 1997). The ability of
Ex32/2 embryos to survive past implantation indicates
that this mutant allele most likely is a hypomorph, al-
though we cannot exclude additional, neomorphic ef-
fects of this mutation. Consistent with these genetics,
we observed that the truncated Ex3-derived protein
retains some (albeit dramatically reduced) ability to re-
spond to receptor tyrosine kinase activation (Figure 1E).
To our initial surprise, Ex22/2 and Ex2*2/2 embryos had
similar phenotypes (Table S1 [see the Supplemental
Data available with this article online] and data not
shown), despite the fact that the Ex2 allele also encodes
N-terminally truncated Shp2. However, the Ex2-derived
protein proved to be catalytically inactive (data not
shown), in contrast to the elevated PTP activity associ-
ated with the Ex3-encoded truncation (Qu et al., 1997;
Saxton et al., 1997). Taken together, these data indicate
that Shp2 is essential for peri-implantation embryogen-
esis. Furthermore, proper targeting of Shp2 and its cat-
alytic activity are required at this developmental stage.

Increased Apoptosis in Shp2 Null
Blastocyst Cultures

Upon ex vivo culture, wt and Ex2*+/2 blastocysts prolif-
erated, ‘‘hatched,’’ and gave rise to the ICM, primitive
endoderm, and an adherent trophectodermal layer that
included TG cells (Figure 2A). For the first 48 hr, Ex2*2/2

and wt blastocysts were morphologically indistin-
guishable. After hatching (by day 3 of culture), however,
mutant blastocysts showed dramatically reduced cell
numbers, and by 5 days, only a thin layer of epithelioid
cells remained (Figure 2A). DNA synthesis, as reflected
by 5-bromo-20-deoxyuridine (BrdU) incorporation, was
unimpaired in Ex2*2/2 blastocysts (data not shown). In
contrast, after 48 hr of culture, mutant blastocysts
showed markedly increased apoptosis (Figure 2B),
strongly suggesting that peri-implantation lethality in
Ex2*2/2 embryos results from increased cell death in
the absence of Shp2.

Wt and Ex2*+/2 blastocysts (at E3.5) showed intense
immunostaining with a phospho-specific Erk1/2 (p-Erk)
antibody in regions corresponding to epiblast and tro-
phectodermally derived cells, consistent with Erk acti-
vation at these sites. In contrast, p-Erk staining was dra-
matically reduced in Ex2*2/2 embryos, even at times
when wt and mutant blastocysts had comparable num-
bers of cells (Figure 2C). Analysis of endodermal (Dab2)
(Yang et al., 2002), epiblast (Oct3/4) (Nichols et al., 1998),
and trophoectodermal (mEomesodermin [mEomes],
Cdx2) (Ciruna and Rossant, 1999; Russ et al., 2000;
Tanaka et al., 1998) markers revealed that both of these
lineages were specified, but either failed to expand to
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Figure 1. Generation of Shp2 Null Mice

(A) Partial map of the murine Shp2 gene (top), including exons (Ex) 2–4 and selected restriction sites (B, BamHI; K, KpnI; S, SpeI; X, XhoI). The

targeting vector (middle) replaces Ex2 with a splice acceptor(SA)/b-gal pGK/Neo cassette, generating a 16.4 kb KpnI fragment detected with

probe A (bottom). Diptheria toxin A (DTA) was used for negative selection. Arrowheads depict primers used for PCR screening/genotyping.

(B) Southern blot of KpnI-digested DNA from wild-type (WT) and two properly targeted heterozygous Ex2*+/2 ES clones (74, 96), hybridized to

probe A.

(C) Immunoblot (with a-Shp2 C-terminal antibodies) of total cell lysates prepared from tissues (H, heart; K, kidney; L, lung; Li, liver; M, muscle;

S, spleen) from the indicated mice. Ex32/2 fibroblast lysate (F) is shown on the right. All cells/tissues containing an Ex2 or Ex3 allele express

a truncated Shp2 species; only full-length Shp2 is present in Ex2*+/2 tissues.

(D) Representative H&E-stained sagittal sections of wild-type+/+ and Ex2*2/2 embryos. In contrast to wild-type embryos, which implant and gas-

trulate normally, the few Shp2 null embryos (Ex2*2/2) that could be identified by genotyping at E6.5 or E7.5 are necrotic and resorbing. Epc, ec-

toplacental cone; En, embryonic endoderm; Ec, embryonic ectoderm; Ch, chorion; Am, amnion; M, mesoderm; The scale bar represents 150 mm.

(E) The Ex3 allele is a biochemical hypomorph. Ex32/2 fibroblasts with (R) or without reconstitution with wild-type Shp2 were starved (0) and then

restimulated with the indicated growth factors for 5 min. Top panel: immunoprecipitates, prepared with a-Shp2 C-terminal antibodies, were sub-

jected to antiphosphotyrosine (pTyr) immunoblotting. Upon stimulation, the truncated Ex3-derived Shp2 species becomes tyrosyl phosphory-

lated (arrow) and associates with other phosphotyrosyl proteins (arrowheads), although in decreased amounts compared with reconstituted

wild-type Shp2. Bottom panel: immunoblot with a-Shp2 N-terminal antibodies (Shp2N) shows reconstitution with wild-type Shp2.
appropriate cell numbers or, perhaps more likely given
the blastocyst culture results, to survive (Figure 2D).

TS Cell Survival Requires Shp2

The peri-implantation lethality observed in Shp2 null
embryos (Figures 1 and 2), which resembles that seen
in embryos lacking FGFR signaling components (see In-
troduction); the essential role for the trophoblast in im-
plantation and the requirement for FGF signaling in early
trophectodermal development (Cross, 2000; Rossant
and Cross, 2001); as well as the function of Shp2 in
FGFR signaling in cell lines (Ivins Zito et al., 2004; Saxton
et al., 1997; Zhang et al., 2004) and in Xenopus embryos
(Tang et al., 1995) suggested that trophectodermal
defects were an important contributor to the Shp2 null
phenotype. Derivation and propagation of TS cell lines
requires FGF4 (Tanaka et al., 1998). As expected, TS
lines were readily obtained from wt and Shp2 Ex2*+/2

blastocysts, but, in contrast, no stable TS lines were iso-
lated from Shp2 Ex2*2/2 blastocysts (Figure 2E).

To distinguish between effects of Shp2 on FGF4-
evoked cell cycle progression versus survival, we de-
rived TS lines from embryos bearing an inducible
(‘‘floxed’’) allele of Shp2 in which exon 11 (encoding
the catalytic center of the enzyme) is flanked by lox P
sites; upon deletion, this allele also generates a null



Developmental Cell
320
mutation in Shp2 (Zhang et al., 2004; W.Y. and B.G.N.,
unpublished data). Homozygous floxed (fl/flShp2)
Shp2 TS cells showed characteristic TS cell morphology
(Figure S1A) and expressed the TS cell markers Cdx2
and mEomes (Figure S1C). Under differentiation condi-
tions (Tanaka et al., 1998), these cells underwent marked
morphological alteration, with the appearance of TG
cells and a substantial increase in ploidy (Figure S1B).

Table 1. Genotypes of Embryos and Neonates Derived from Shp2

Ex2*+/2 Intercrosses

Stage

Shp2 Ex2*

+/+ +/2 2/2 Total

Neonate 64 122 0a 186

E8.5 5 5 0a 10

E7.5 14 26 3a 43

E6.5 17 29 5a 51

E3.5 20 38 17 75

a p < 0.05 (chi-square test).
Also, as expected (Tanaka et al., 1998), Cdx2 and
mEomes expression declined, whereas Mash2 levels
increased (Figure S1C).

We then infected fl/flShp2 TS cells with either an
adenovirus (AdCre/GFP) that coexpresses green fluo-
rescence protein (GFP) and Cre recombinase (Cre) to
promote acute excision of the floxed allele via recombi-
nation or a control adenovirus expressing GFP alone
(AdGFP) (Figure 3A), and we purified GFP+ cells by
FACS. Microscopy (Figure 3B) and flow cytometry for
GFP (prior to sorting; data not shown) showed that
nearly all TS cells could be infected by each virus, effec-
tively eliminating Shp2 expression in most cells by 72 hr
(Figure 3B). Shp2 deletion caused markedly decreased
cell proliferation and TS colony formation (Figure 3C).
Cell cycle distribution, as assessed by flow cytometry
with propidium iodide, was largely unaltered in TS cells
acutely deleted for Shp2. Moreover, comparable num-
bers of polyploid TS derivatives were observed in the
presence or absence of Shp2 (Figure S2A), suggesting
that Shp2 is not absolutely required to generate TG cells.
Figure 2. Effects of Shp2 Deficiency on Early Embryogenesis

(A) Shp2 null blastocysts exhibit catastrophic cell death. Blastocysts, isolated at E3.5 (D0), were cultured individually ex vivo for 5 days (D1–D5),

and they were then genotyped. Wild-type+/+ and Ex2*+/2 blastocysts show expansion of inner cell mass (ICM), presence of trophectoderm (and

primitive endoderm; data not shown, but see [D]), and appearance of trophoblastic giant (TG) cells. Ex2*2/2 blastocysts show catastrophic cell

loss after hatching (wD3), and only a thin epithelioid layer remained in place of TG cells. MT, mural trophoectoderm; PTE, polar trophectoderm.

(B) Ex2*2/2 blastocysts die by apoptosis. TUNEL assays (right panels) were conducted on blastocysts (n = 23) after 48 hr of culture. Genotypes

were determined by PCR.

(C) Erk activation is defective in ICM and trophectodermal regions in the absence of Shp2, as shown by staining of E3.5 blastocysts (n = 17) with

anti-phospho Erk1/2 antibodies (a-pErk1/2). Nuclei were visualized by DAPI.

(D) Lineage specification in Shp2 null blastocysts. Trophectodermal (Cdx2, mEomes), endodermal (Dab2), and epiblast (Oct3/4) markers, Shp2,

and b-actin (as a loading control) were assayed by RT-PCR in wild-type and Ex2*2/2 E4.5 blastocysts.

(E) Derivation of TS cell lines requires Shp2. E3.5 blastocysts (top panels) from the indicated genotypes were cultured individually under TS cell

conditions in the presence of FGF4 and heparin on mitomycin C-treated feeder cells. Wild-type and Ex2*+/2, but not Ex2*2/2, blastocysts yielded

TS colonies (lower panels; quantified at bottom). *p < 0.005 by chi-square test.
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Figure 3. Acute Deletion of Shp2 Decreases TS Cell Number as a Consequence of Increased Apoptosis

(A) Scheme for generating TS cells with acute deletion of Shp2. Lox P sites (triangles) flanking Ex11 (rectangles) in fl/flShp2 TS cells allow for Shp2

deletion following infection with an adenovirus-expressing Cre recombinase (AdCre/GFP). Adenovirus-expressing GFP (AdCre) infections serve

as controls.

(B) Efficiency of fl/flShp2 TS cell infection (left panels) and Shp2 deletion (right panels) by the indicated adenoviruses, assessed by GFP fluores-

cence and immunoblotting, respectively. Arrowheads show blebbing in cells undergoing apoptosis. Erk2 levels are shown as a loading control.

(C) Proliferation (left panel) and colony-forming ability (right panel) of FACS-purified (for GFP+) wild-type (AdGFP) and acutely deleted (AdCre/

GFP) TS cells cultured in the presence of FGF4. Data represent mean 6 SD of triplicates from a representative growth curve experiment and two

independent colony assays, also carried out in triplicate (scored after 5 days). *p < 0.001 by one-tailed Student’s t test.

(D) Apoptosis was quantified by Annexin V staining and flow cytometry of fl/flShp2 TS cells 72 hr postinfection with the indicated adenoviruses.

All cells were gated for GFP+. The experiment shown is one of three with similar results (see also Figure S2B).
However, Shp2 null TS cells died rapidly, despite the
continued presence of FGF4, as indicated by altered
morphology (Figure 3B, arrowheads) and Annexin V
staining (Figure 3D). These effects were due specifically
to Shp2 deficiency, rather than to a spurious effect of
AdCre/GFP infection, as proliferation and survival of wt
TS cells infected with AdCre were unaltered (Figure S2B
and data not shown). Because Shp2 deletion efficiency
was so high in fl/flShp2 TS cells infected with AdCre/
GFP, in subsequent experiments we analyzed mass-
infected, rather than sorted, GFP+ cells.

Shp2 Deletion Impairs FGFR Signaling in TS Cells

Wt and Shp2-deleted TS cells showed similar overall
tyrosyl phosphorylation patterns, although a few un-
identified proteins had increased antiphosphotyrosine
immunoreactivity (Figure 4A; top panel, arrowheads).
Consistent with the effects of Shp2 deficiency in other
cell types, FGF4-evoked activation of the predominant
Erk isoform, Erk2 (Figure 4A; middle panels), and Ras
(Figure 4B) were reduced in acutely deleted TS cells.
SFK activation, as monitored by phosphorylation of
the activation site tyrosyl residue (pY416), also was di-
minished. Presumably, SFK activation was decreased,
because, unlike in wt cells, the SFK C-terminal inhibitory
tyrosine (pY527) failed to undergo rapid dephosphoryla-
tion in response to FGF4 (Figure 4C). These data and
data from previous studies (Ren et al., 2004; Zhang
et al., 2004) are consistent with a model in which Shp2
is required for SFK activation, which, in turn, is needed
for full activation of Ras and Erk. In accord with this hy-
pothesis, treatment of wt TS cells with the SFK-selective
inhibitors PP2 or SU6656 (Blake et al., 2000) resulted in
comparable levels of inhibition of SFK, Ras, and Erk
(Figure 4D). Under the same conditions, tyrosyl phos-
phorylation of FGFR and its substrate FRS2 was unim-
paired (Figure 4E), indicating that PP2 and SU6656 did
not impair FGFR kinase activity. We conclude that
Shp2 modulates Ras/Erk activation in TS cells primarily,
if not exclusively, by controlling SFK activation. Interest-
ingly, in contrast to the marked effects of Shp2 defi-
ciency on FGF4 signaling in TS cells, leukemia inhibitory
factor (LIF) signaling was largely unaffected (Figure 4F).

Shp2 Regulates TS Cell Survival Primarily via Effects

on Bim
Recent studies of cultured cell lines indicate that the
proapoptotic BH3-only protein Bim can be phosphory-
lated by Erk on several sites and targeted for ubiquitin-
mediated degradation (Harada et al., 2004; Ley et al.,
2003; Luciano et al., 2003; Reginato et al., 2003). FGF4
stimulation of wt TS cells caused rapid phosphorylation
(indicated by a characteristic mobility shift) and degra-
dation of Bim. In contrast, in Shp2-deleted TS cells,
Bim electrophoretic mobility remained normal, and the
protein was stable after FGF4 treatment (Figure 5A).
Expression of other apoptotic regulators, such as Bid
or Bad, was not altered in the absence of Shp2 (Fig-
ure 5A). Consistent with Erk-dependent phosphoryla-
tion, the Mek inhibitor U0126, but not the PI3K inhibitor
Ly294002, blocked the Bim mobility shift (Figure 5B).
Furthermore, PP2 treatment, at a dose that inhibits
SFK activation and, consequently, Erk activation (Fig-
ure 4D), also inhibits Bim phosphorylation to a similar
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Figure 4. Biochemical Effects of Shp2 Deletion in TS Cells

(A–F) (A–C and E) fl/flShp2 or (D) wild-type TS cells were infected with AdGFP or AdCre/GFP, and they were then starved or stimulated with (A–E)

FGF4 or (F) LIF for the indicated times. (A) Total tyrosyl phosphorylation and Erk activation were measured with the indicated phospho-specific

antibodies. Blots were reprobed with anti-Erk antibodies to control for loading. (B) Ras activation (Ras-GTP), as measured by GST-RafRBD bind-

ing, is impaired in the absence of Shp2. Similar amounts of total cell lysate (TCL) were used for each assay. (C) SFK activation requires Shp2.

Immunoblots with phospho-specific SFK antibodies reveal that Y527 dephosphorylation and Y416 phosphorylation are defective in Shp2-

deleted TS cells. Blots were reprobed with anti-total Src (Src) antibodies as a loading control. (D) SFK activation is upstream of Ras/Erk activation

in FGF4-stimulated TS cells. Starved wild-type TS cells were treated with the SFK-selective inhibitors PP2 (10 mM) or SU6656 (5 mM), or DMSO

vehicle (V), and they were then stimulated with FGF4. SFK and Erk activation were measured by immunoblotting with phosphospecific anti-

bodies. Ras activation was measured as in (B). The numbers below the panels represent relative immunoblot intensity (in arbitrary units); the

value in starved cells is set as 1. Total Erk levels are shown as a loading control. (E) PP2 treatment does not inhibit FGFR kinase activity.

Wild-type TS cells were starved and treated with vehicle (DMSO) or PP2 before stimulation with FGF4 for 5 min. FGFR2 and FRS2 immunopre-

cipitates were resolved by SDS-PAGE and immunoblotted with a-phosphotyrosine (pTyr) antibodies, followed by reprobing with a-FGFR2 and

a-FRS2, respectively. Phosphorylated and total Erk activation were measured in the same cell lysates (TCL) used for the immunoprecipitations.

At PP2 concentrations (10 mM) that cause significantly reduced Erk activation, FGFR2 or FRS2 tyrosyl phosphorylation (and, by inference, FGFR

activity) is unimpaired. (F) LIF signaling is unaffected in Shp2-deficient TS cells. Data shown represent immunoblots with the indicated anti-

bodies. Results in this figure are representative blots from at least three independent experiments for each panel.
degree (compare intensities of upper and lower Bim
bands in Figure 5B).

To evaluate the consequences of persistent Bim ex-
pression in Shp2-deficient TS cells, pools of fl/flShp2
TS cells infected with a retrovirus expressing a previ-
ously generated Bim shRNA (Harada et al., 2004) or
the parental control retrovirus were superinfected with
Ad or AdCre. Bim shRNA caused an w80% reduction
in Bim levels, without altering Erk or Shp2 expression
(Figure 5C). Remarkably, Bim depletion substantially
(by w60%) protected TS cells from the loss of viability
(Figure 5D; p < 0.01 by ANOVA) and impaired prolifera-
tion (Figure 5E; p < 0.01 by ANOVA) caused by Shp2 de-
letion. Notably, Bim depletion had no effect on wt TS cell
proliferation (Figure 5E; compare shBim + Ad versus Ad;
p > 0.05 by ANOVA), arguing for a specific role for Bim in
mediating cell death in response to Shp2 deficiency.
However, the rescue of cell death (Figure 5D; p < 0.01
by ANOVA) and proliferation (Figure 5E; p < 0.001 by
ANOVA) by Bim depletion was incomplete (compare
shBim + AdCre with Ad-infected control or shBim cells
in both figures), arguing that other FGF-evoked path-
ways also contribute to survival signaling.

Discussion

We have delineated a signaling pathway by which FGF4
prevents TS cell death (Figure 6). Upon FGF4 stimula-
tion, Shp2 is recruited to the scaffolding adaptor FRS2
(Gotoh et al., 2005; Hadari et al., 1998) and thereby acti-
vated (Barford and Neel, 1998). Shp2 activity is required
for the dephosphorylation of the inhibitory tyrosines on
SFK, probably by controlling Csk recruitment (Ren
et al., 2004; Zhang et al., 2004), and thus for SFK activa-
tion (Figure 4C). Active SFK, in turn, are required for nor-
mal activation of the Ras/Erk cascade (Figure 4D),
whereas Erk is required to phosphorylate and destabi-
lize the proapoptotic protein Bim (Figures 5A and 5B).
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Figure 5. Shp2 Regulates TS Cell Survival Primarily by Promoting Bim Degradation

(A) fl/flShp2 TS cells infected with the indicated adenoviruses were starved (0), and they were then stimulated with FGF4 for the indicated times.

Activated (pErk2) and total Erk2, BimEL, Shp2, Bid, and Bad levels in cell lysates were assessed by immunoblotting.

(B) Bim phosphorylation is SFK and Erk dependent. Wild-type TS cells growing in FGF4 were treated with DMSO vehicle (V), UO126 (10 mM),

LY294002 (10 mM), UO126 plus LY294002, or PP2 (10 mM), and lysates were immunoblotted with the indicated antibodies.

(C) Efficient Bim depletion by Bim shRNA. fl/flShp2 TS cells were infected with a retrovirus expressing Bim shRNA (shBim) or its scrambled con-

trol, puromycin-resistant cell pools were then infected with adenovirus (2) or adenovirus-Cre (+) for 72 hr, and total cell lysates from randomly

growing cells were immunoblotted with the indicated antibodies.

(D) Bim depletion substantially restores survival of Shp2-deficient TS cells. TS cells prepared as in (C) were analyzed for apoptosis by Annexin V

staining/flow cytometry. The left panel shows a representative flow cytometric analysis from a single experiment. The right panel shows quan-

tification of three experiments (mean 6 SD), evaluated by ANOVA. * indicates p < 0.001 versus Ad-infected controls; ** indicates p < 0.01 versus

all other groups.

(E) Bim depletion substantially restores proliferation of Shp2-deficient TS cells. Growth curve (mean 6 SD) of TS cells prepared as in (C) and

cultured under standard conditions. Differences between groups on days 4 and 5 were evaluated by ANOVA; *p < 0.001; $p < 0.001; #p <

0.01. There was no significant difference (p > 0.05) between the shBim +Ad and shBim +AdCre groups.
In the absence of Shp2, Bim accumulates and causes TS
cell death despite the presence of FGF4 (Figures 5A and
5C–5E). The importance of our proposed Shp2/SFK/
Ras/Erk/Bim pathway is demonstrated by the substan-
tial restoration of viability and proliferation of Shp2-
deficient TS cells after Bim depletion (Figures 5C–5E).
The defect in the trophoblast lineage defined herein
could certainly account for the early demise of embryos
lacking Shp2. However, we do not exclude the possibil-
ity that Shp2 is also required for early events in the epi-
blast and/or primitive endoderm.

Bim depletion does not rescue Shp2-deficient TS cells
completely. Conceivably, the low level of Bim that per-
sists after shRNA knockdown is sufficient to cause
residual cell death. Alternatively, other pathways down-
stream from the FGFR may contribute to TS cell viability.
For example, Akt has antiapoptotic actions in other cell
types (Downward, 2004). Notably, Akt phosphorylates
Mdm-2 (among other targets) (Mayo and Donner, 2001;
Ogawara et al., 2002), and mdm-2 deletion results in
peri-implantation lethality (Montes de Oca Luna et al.,
1995). In addition, deletion of Tor, another Akt target, re-
sults in epiblast and trophoectodermal defects and pre/
peri-implantation lethality (Murakami et al., 2004). Akt
activation also is impaired in Shp2-deleted TS cells,
and inhibitor studies suggest that this is a consequence
of defective SFK activation (W.Y. and B.G.N., unpub-
lished data).

Our proposed TS cell survival pathway is consistent
with the phenotype of mice lacking FGF4 (Feldman
et al., 1995), FRS2 (Gotoh et al., 2005), and Erk2 (Saba-
El-Leil et al., 2003), which show peri-implantation lethal-
ity and comparable effects on blastocysts ex vivo. Two
groups have reported targeted mutations in murine
FGFR-2. One mutant (Arman et al., 1998) has a similar
phenotype to Ex2*2/2 mice, although the other survives
to the gastrulation stage (Xu et al., 1998). Deletion of the
antiapoptotic Bcl-2 family member Mcl1 also causes
peri-implantation lethality (Rinkenberger et al., 2000).
Conceivably, a pathway parallel to Erk activation (see
above) regulates Mcl1 expression/activity in TS cells
and contributes to TS cell survival. However, Mcl12/2
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blastocysts do not show increased apoptosis, so Mcl1
may have alternative (non-cell-death-regulating) func-
tions in blastocyst development (Rinkenberger et al.,
2000). Although aspects of their phenotype differ from
the effects of Shp2 deficiency, blastocysts lacking the
homeodomain transcription factor Cdx-2 have implan-
tation defects and increased apoptosis, and also fail to
yield TS cell lines (Strumpf et al., 2005). Furthermore,
in intestinal epithelial cells, Cdx-2 phosphorylation at
Ser60 is blocked by Mek inhibition (Rings et al., 2001).
Thus, Cdx-2 could be an additional downstream target
(besides Bim) of the FGF4/Shp2/Erk signaling pathway
described herein, although we do not exclude the possi-
bility that it lies in a parallel pathway.

Ex2*2/2 embryos die substantially earlier than the pre-
viously reported Ex32/2 mice (Saxton et al., 1997). Shi
et al. (2000) reported that the Ex3-encoded truncation
is not engaged after EGFR activation. However, consis-
tent with our genetic analysis, we find that this Shp2 mu-
tant retains limited targeting ability (Figure 1E), leading
us to conclude that the Ex3 allele is a hypomorph. We
also observed that the previously generated Ex2 allele
encodes an N-terminal truncation (Figure 1C). Unlike
the Ex3 protein, which has increased PTP activity, the
Ex2 protein cannot be activated. Consistent with these
biochemical properties, Ex22/2 and Ex2*2/2 embryos
have the same phenotype (Table S1 and data not
shown).

Earlier studies of mice lacking FGFR signaling compo-
nents could not elucidate the cellular or molecular de-
tails underlying defective trophoblast development, be-
cause viable mutant TS cells were not obtained. We
circumvented this problem by using an inducible Shp2
allele, and we obtained large numbers of TS cells. Acute
deletion of Shp2 in these cells clearly shows that the ma-
jor effect of the Shp2/Src/Ras/Erk pathway downstream

Figure 6. Model for Control of TS Cell Survival by FGF4 through the

Shp2/SFK/Ras/Erk/Bim Pathway

Experiments suggest that this pathway accounts for 50%–60% of

TS cell survival. Dashed lines indicate additional intervening steps;

question marks and ‘‘X’’ indicate potential, as yet unverified alterna-

tive pathways.
of FGF4 is to promote TS cell survival, with minimal
effects on cell cycle progression. It was difficult to pre-
cisely delineate the role of this pathway on TG cell differ-
entiation, owing to the rapid onset of apoptosis after
Shp2 deletion. Future studies, in which Ex2*2/2 TS cells
are rescued by Bim depletion and/or expression of addi-
tional antiapoptotic genes, should allow clearer resolu-
tion of the role of the Shp2 pathway in TG differentiation
as well as other TS cell properties, such as self-renewal.

Previous studies have shown that removal of FGF
from TS cell cultures results in differentiation to TG cells
(Tanaka et al., 1998), not cell death. Thus, at first glance,
the increased cell death caused by absence of a down-
stream component of FGFR signaling may appear para-
doxical. We suggest that this paradox is more apparent
than real, and that it reflects triggering of apoptosis
in the presence of ‘‘imbalanced’’ signaling from the
FGFR. Similar phenomena have been observed in other
contexts. For example, Myc overexpression results in
apoptosis in the absence, but not the presence, of am-
ple levels of growth factors (Nilsson and Cleveland,
2003; Secombe et al., 2004). We suspect that the acti-
vated FGFR simultaneously transmits antiapoptotic
and self-renewal/antidifferentiative signals. In the com-
plete absence of FGF, loss of the latter signals is domi-
nant. However, when only some aspects of downstream
signaling are compromised, as in Shp2 deficiency, for
example, TS cells are directed to die. Such a mechanism
may prevent the generation of aberrantly/incompletely
differentiated TS cells.

The roles of some components of our TS cell survival
pathway have also been studied in embryonic stem (ES)
cells. SFK, in particular, Yes, is essential for ES cell self-
renewal (Anneren et al., 2004). In contrast to our findings
for TS cells, however, the primary effect of global SFK or
specific Yes inhibition is impaired ES cell proliferation,
not increased apoptosis. Moreover, SFK activation is
not required for (LIF-evoked) Erk activation in ES cells
(Anneren et al., 2004). Inhibiting PI3K also impairs ES
cell self-renewal, apparently by causing increased Erk
activation (Paling et al., 2004). Therefore, our findings
suggest that tissue stem cells and ES cells use signifi-
cantly different signaling strategies to regulate self-
renewal, survival, and differentiation. Shp2 probably
plays an important role in ES cell proliferation and/or
self-renewal as well, as we have been unable to derive
Ex2*2/2 ES cells (W.Y. and B.G.N., unpublished data).
It will be interesting to assess the effects of Shp2 dele-
tion in ES cells, studies that should be facilitated by
our inducible Shp2 allele and the acute deletion ap-
proach described here.

Experimental Procedures

Generation and Genotyping of Mutant Mice

J1 ES cells (129Sv) were maintained on g-irradiated mouse embry-

onic fibroblasts in Dulbecco’s modified Eagle’s medium (DMEM),

supplemented with 15% fetal calf serum (Hyclone), 500 U/ml LIF

(GIBCO-BRL), 2 mM L-glutamine, and 0.1 mM b-mercaptoethanol.

Genomic clones containing mouse Shp2 were obtained from Incyte

Genomics, Inc. A targeting construct that replaces Ex2 and flanking

intronic sequences with a splice acceptor sequence, followed by

a b-galactosidase/phosphoglycerokinase (pGK) promoter-neomy-

cin (neo) expression cassette (Figure 1A), was linearized with XhoI

and was electroporated (25 mg) into J1 cells with a Bio-Rad Gene
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Pulser (0.4 kV, 25 mF). Clones were selected in 200 mg/ml G418

(GIBCO-BRL), screened for homologous recombinants by PCR

with an external forward primer and an internal primer specific for

the neo gene, and confirmed by Southern blotting of Kpn1-digested

DNA. Screening primers are available from W.Y. upon request. Cor-

rectly targeted ES cells (clone 96) were injected into C57BL6/J blas-

tocysts, and germline transmission was verified by PCR with F1 tail

DNA. The Shp2 Ex2*+/2 heterozygotes were maintained on a hybrid

129Sv 3 C57BL6/J background. The generation of fl/+Shp2 mice

(Zhang et al., 2004) will be described elsewhere; details are available

from W.Y.

Routine genotyping was performed by standard procedures by

using genomic DNA from neonate toes or tails. Primers P1 (50-TAG

GAACCTGACTCTGTAAGCCC-30) and P2 (50-GATGTGCTGCAAGG

CGATTAAG-30) amplify a 450 bp fragment corresponding to the wt

allele; P1 and P3 (50-TGAGGGAGAACAGGACAATG-30) amplify a

550 bp fragment derived from the mutant allele (Figure 1A). Embryos

were genotyped by modifying a published protocol (Chester et al.,

1998). After embryo digestion at 55ºC in 5–50 ml lysis buffer

(50 mM KCl, 10 mM Tris [pH 8.3], 2 mM MgCl2, 0.1 mg/ml gelatin,

0.45% NP-40, and 0.45% Tween-20) containing 10 mg/ml proteinase

K, samples were boiled for 10 min, and aliquots (1.5 ml) were used for

PCR. Thermocycler settings are available from W.Y. upon request.

Blastocyst Cultures

Timed matings were performed by placing 8- to 12-week-old fe-

males with males overnight, and plugs were checked the next morn-

ing. Fertilization was assumed to occur at midnight, and the time of

plug identification was defined as E0.5. Individual blastocysts (re-

covered by flushing oviducts at E3.5) were transferred to 96-well

plates or multichamber culture slides, and they were maintained

for 1–6 days in ES medium without LIF (Brown and Baltimore,

2000). Each blastocyst was numbered and documented photo-

graphically; thus, it could be genotyped after histological analysis.

Trophectodermal, epiblast, and endodermal markers were as-

sessed in E4.5 blastocysts by semiquantitative RT-PCR, by using

the Titan One Tube RT-PCR kit (Roche) and published primers for

Dab2 (Rosenbauer et al., 2002), Oct3/4 (Nichols et al., 1998), Cdx2

(Mitsui et al., 2003), mEomes (Zappone et al., 2000), b-actin (Nichols

et al., 1998), and Shp2 (Qu et al., 1997).

TS Cell Culture

TS cells were derived from blastocysts of Ex2*+/2 intercrosses or

fl/flShp2 mice and were cultured as described (Tanaka et al., 1998)

on feeders for w3 weeks. TS colonies were then recovered en

mass and separated from feeders by serial replating in conditioned

medium from CD1 fibroblasts in the presence of FGF4 and heparin

(both from Sigma). TS cells used for the experiments herein were

cultured off feeders for 3–4 months, during which time they retained

the ability to undergo differentiation (see Figure S1). In some exper-

iments, TS cells were treated with various inhibitors for 30 min prior

to analysis. Where indicated, fl/flShp2 TS cells were seeded at 1 3

106/10 cm dish, and they were infected the next day with AdCre/

GFP or AdGFP (1–2 3 1010 pfu/ml; obtained from the University of

Iowa Gene Transfer Vector Core) for 4 hr. In initial experiments, in-

fection efficiency was assessed by flow cytometry, and GFP+ cells

were purified by FACS (Becton-Dickinson). Because these studies

showed that infection efficiency was nearly 100%, in subsequent ex-

periments cells were used directly (i.e., without sorting). Also, in

some later experiments, infections were carried out with adenovirus

(Ad) or adenovirusCre (AdCre) (i.e., each virus without coexpressed

GFP), which resulted in similar deletion efficiency. Infected cells

were placed into fresh complete TS cell medium, and they were cul-

tured for 24–48 hr prior to biochemical analysis. TS cells were

starved overnight in RPMI 1640 supplemented with 0.2% FCS, and

they were then exposed to FGF4 (40 ng/ml) or LIF (1000 units/ml)

for the indicated times. For Bim depletion, pSuper (retro)Bim shRNA

or its scrambled control (Harada et al., 2004) was transiently co-

transfected with EcoPack (Mohi et al., 2005) into 293T cells, and ret-

roviral supernatants were used to infect fl/flShp2 TS cells (w2 3

105/6 cm dish) for 4 hr. Pools of puromycin-resistant cells were

used for subsequent experiments. TS cell death was quantified by

flow cytometry with FITC-Annexin V or Annexin V 647 Fluor (Molec-

ular Probes), 72 hr after AdGFP or AdCre/GFP infection.
Histology and Immunocytochemistry

Decidua from timed matings were dissected in ice-cold phosphate-

buffered saline (PBS), fixed in 4% paraformaldehyde (ON, 4ºC), de-

hydrated, and paraffin embedded. Sections (5 mm) were stained

with hematoxylin and eosin (H&E). After 48 hr, blastocysts were fixed

in 4% paraformaldyhyde/PBS for 30 min, permeabilized, and ana-

lyzed by TUNEL assay, by using the In Situ Cell Death Detection

Fluorescein Kit (Roche). Anti-pErk staining was performed by mod-

ifying a previous protocol (Strumpf et al., 2005); antibodies were

used at 1:100 dilution. FITC-labeled goat anti-rabbit secondary anti-

bodies were purchased from Molecular Probes.

Protein Analyses

Cells or tissues were lysed in NP-40 buffer (0.5% NP40, 150 mM

NaCl, 1 mM EDTA, 50 mM Tris [pH 7.4]), supplemented with a prote-

ase inhibitor cocktail (1 mM PMSF, 10 mg/ml aprotinin, 0.5 mg/ml

antipain, and 0.5 mg/ml pepstatin). Shp2 immunoprecipitations

were performed on cleared lysates, as described previously (Zhang

et al., 2004). For immunoblotting, extracts (10–50 mg) were resolved

by SDS-PAGE, transferred to PVDF membranes, and incubated with

primary antibodies for 2 hr or overnight at 4ºC (according to the man-

ufacturer’s instructions), followed by HRP-conjugated secondary

antibodies. Detection was by enhanced chemiluminescence (Amer-

sham). Monoclonal anti-phosphotyrosine antibody 4G10, clone Ras

10 (anti-pan Ras), and polyclonal anti-Bim, -Bid, and -Bad anti-

bodies were purchased from Upstate Biotechnology, Inc. The

monoclonal anti-Shp2 N-terminal antibody was from BD-Pharmin-

gen. Polyclonal anti-Shp2 C-terminal, -Erk1/2, -Stat1, and -Stat3 an-

tibodies were purchased from Santa Cruz Biotechnology. Polyclonal

anti-phospho-Erk1/2, -phospho-Stat3, -phospo-Stat1, and phos-

pho-Src Y416 and Y527 were purchased from Cell Signaling. Poly-

clonal anti-FGFR2 and anti-FRS2 antibodies were from Dr. J.

Schlessinger (Yale Medical School).

Supplemental Data

Supplemental Data including two figures and one table are avail-

able at http://www.developmentalcell.com/cgi/content/full/10/3/

317/DC1/.
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