37 research outputs found

    Spectrin-based skeleton as an actor in cell signaling

    Get PDF
    This review focuses on the recent advances in functions of spectrins in non-erythroid cells. We discuss new data concerning the commonly known role of the spectrin-based skeleton in control of membrane organization, stability and shape, and tethering protein mosaics to the cellular motors and to all major filament systems. Particular effort has been undertaken to highlight recent advances linking spectrin to cell signaling phenomena and its participation in signal transduction pathways in many cell types

    Residual Isocyanates in Medical Devices and Products: A Qualitative and Quantitative Assessment

    No full text
    We conducted a pilot qualitative and quantitative assessment of residual isocyanates and their potential initial exposures in neonates, as little is known about their contact effect. After a neonatal intensive care unit (NICU) stockroom inventory, polyurethane (PU) and PU foam (PUF) devices and products were qualitatively evaluated for residual isocyanates using Surface SWYPE ™ . Those containing isocyanates were quantitatively tested for methylene diphenyl diisocyanate (MDI) species, using UPLC-UV-MS/MS method. Ten of 37 products and devices tested, indicated both free and bound residual surface isocyanates; PU/PUF pieces contained aromatic isocyanates; one product contained aliphatic isocyanates. Overall, quantified mean MDI concentrations were low (4,4‘-MDI = 0.52 to 140.1 pg/mg) and (2,4‘-MDI = 0.01 to 4.48 pg/mg). The 4,4‘-MDI species had the highest measured concentration (280 pg/mg). Commonly used medical devices/products contain low, but measurable concentrations of residual isocyanates. Quantifying other isocyanate species and neonatal skin exposure to isocyanates from these devices and products requires further investigation

    Developmental Regulation of NO-Mediated VEGF-Induced Effects in the Lung

    No full text
    Vascular endothelial growth factor (VEGF) is known to have a pivotal role in lung development and in a variety of pathologic conditions in the adult lung. Our earlier studies have shown that NO is a critical mediator of VEGF-induced vascular and extravascular effects in the adult murine lung. As significant differences have been reported in the cytokine responses in the adult versus the neonatal lung, we hypothesized that there may be significant differences in VEGF-induced alterations in the developing as opposed to the mature lung. Furthermore, nitric oxide (NO) mediation of these VEGF-induced effects may be developmentally regulated. Using a novel externally regulatable lung-targeted transgenic murine model, we found that VEGF-induced pulmonary hemorrhage was mediated by NO-dependent mechanisms in adults and newborns. VEGF enhanced surfactant production in adults as well as increased surfactant and lung development in newborns, via an NO-independent mechanism. While the enhanced survival in hyperoxia in the adult was partly NO-dependent, there was enhanced hyperoxia-induced lung injury in the newborn. In addition, human amniotic fluid VEGF levels correlated positively with surfactant phospholipids. Tracheal aspirate VEGF levels had an initial spike, followed by a decline, and then a subsequent rise, in human neonates with an outcome of bronchopulmonary dysplasia or death. Our data show that VEGF can have injurious as well as potentially beneficial developmental effects, of which some are NO dependent, others NO independent. This opens up the possibility of selective manipulation of any VEGF-based intervention using NO inhibitors for maximal potential clinical benefit

    Visual interpretation, not SUV ratios, is the ideal method to interpret 18F-DOPA PET scans to aid in the cure of patients with focal congenital hyperinsulinism.

    No full text
    IntroductionCongenital hyperinsulinism is characterized by abnormal regulation of insulin secretion from the pancreas causing profound hypoketotic hypoglycemia and is the leading cause of persistent hypoglycemia in infants and children. The main objective of this study is to highlight the different mechanisms to interpret the 18F-DOPA PET scans and how this can influence outcomes.Materials and methodsAfter 18F-Fluoro-L-DOPA was injected intravenously into 50 subjects' arm at a dose of 2.96-5.92 MBq/kg, three to four single-bed position PET scans were acquired at 20, 30, 40 and 50-minute post injection. The radiologist interpreted the scans for focal and diffuse hyperinsulinism using a visual interpretation method, as well as determining the Standard Uptake Value ratios with varying cut-offs.ResultsVisual interpretation had the combination of the best sensitivity and positive prediction values.ConclusionsIn patients with focal disease, SUV ratios are not as accurate in identifying the focal lesion as visual inspection, and cases of focal disease may be missed by those relying on SUV ratios, thereby denying the patients a chance of cure. We recommend treating patients with diazoxide-resistant hyperinsulinism in centers with dedicated multidisciplinary team comprising of at least a pediatric endocrinologist with a special interest in hyperinsulinism, a radiologist experienced in interpretation of 18F-Fluoro-L-DOPA PET/CT scans, a histopathologist with experience in frozen section analysis of the pancreas and a pancreatic surgeon experienced in partial pancreatectomies in patients with hyperinsulinism

    Patterned frequency-modulated oral stimulation in preterm infants: A multicenter randomized controlled trial.

    No full text
    OBJECTIVE:To evaluate the effect of patterned, frequency-modulated oro-somatosensory stimulation on time to full oral feeds in preterm infants born 26-30 weeks gestation. STUDY DESIGN:This is a multicenter randomized controlled trial. The experimental group (n = 109) received patterned, frequency-modulated oral stimulation via the NTrainer system through a pulsatile pacifier and the control group (n = 101) received a non-pulsatile pacifier. Intent-to-treat analysis (n = 210) was performed to compare the experimental and control groups and the outcomes were analyzed using generalized estimating equations. Time-to-event analyses for time to reach full oral feeds and length of hospital stay were conducted using Cox proportional hazards models. RESULTS:The experimental group had reduction in time to full oral feeds compared to the control group (-4.1 days, HR 1.37 (1.03, 1.82) p = 0.03). In the 29-30 weeks subgroup, infants in the experimental group had a significant reduction in time to discharge (-10 days, HR 1.87 (1.23, 2.84) p < 0.01). This difference was not observed in the 26-28 weeks subgroup. There was no difference in growth, mortality or morbidities between the two groups. CONCLUSIONS:Patterned, frequency-modulated oro-somatosensory stimulation improves feeding development in premature infants and reduces their length of hospitalization. TRIAL REGISTRATION:ClinicalTrials.gov NCT01158391

    Pancreatic uptake and radiation dosimetry of 6-[18F]fluoro-L-DOPA from PET imaging studies in infants with congenital hyperinsulinism.

    No full text
    After injecting 25.6 ± 8.8 MBq (0.7 ± 0.2 mCi) of 18F-Fluoro-L-DOPA intravenously, three static PET scans were acquired at 20, 30, and 40 min post injection in 3-D mode on 10 patients (6 male, 4 female) with congenital hyperinsulinism. Regions of interest (ROIs) were drawn over several organs visible in the reconstructed PET/CT images and time activity curves (TACs) were generated. Residence times were calculated using the TAC data. The radiation absorbed dose for the whole body was calculated by entering the residence times in the OLINDA/EXM 1.0 software.The mean residence times for the 18F-Fluoro-L-DOPA in the liver, lungs, kidneys, muscles, and pancreas were 11.54 ± 2.84, 1.25 ± 0.38, 4.65 ± 0.97, 17.13 ± 2.62, and 0.89 ± 0.34 min, respectively. The mean effective dose equivalent for 18F-Fluoro-L-DOPA was 0.40 ± 0.04 mSv/MBq. The CT scan used for attenuation correction delivered an additional radiation dose of 5.7 mSv. The organs receiving the highest radiation absorbed dose from 18F-Fluoro-L-DOPA were the urinary bladder wall (2.76 ± 0.95 mGy/MBq), pancreas (0.87 ± 0.30 mGy/MBq), liver (0.34 ± 0.07 mGy/MBq), and kidneys (0.61 ± 0.11 mGy/MBq). The renal system was the primary route for the radioactivity clearance and excretion.The estimated radiation dose burden from 18F-Fluoro-L-DOPA is relatively modest to newborns

    Population Pharmacokinetics of Fluconazole in Premature Infants with Birth Weights Less than 750 Grams

    No full text
    Fluconazole is an effective agent for prophylaxis of invasive candidiasis in premature infants. The objective of this study was to characterize the population pharmacokinetics (PK) and dosing requirements of fluconazole in infants with birth weights of &lt;750 g. As part of a randomized clinical trial, infants born at &lt;750 g birth weight received intravenous (i.v.) or oral fluconazole at 6 mg/kg of body weight twice weekly. Fluconazole plasma concentrations from samples obtained by either scheduled or scavenged sampling were measured using a liquid chromatography-tandem mass spectrometry assay. Population PK analysis was conducted using NONMEM 7.2. Population PK parameters were allometrically scaled by body weight. Covariates were evaluated by univariable screening followed by multivariable assessment. Fluconazole exposures were simulated in premature infants using the final PK model. A population PK model was developed from 141 infants using 604 plasma samples. Plasma fluconazole PK were best described by a one-compartment model with first-order elimination. Only serum creatinine was an independent predictor for clearance in the final model. The typical population parameter estimate for oral bioavailability in the final model was 99.5%. Scavenged samples did not bias the parameter estimates and were as informative as scheduled samples. Simulations indicated that the study dose maintained fluconazole troughs of &gt;2,000 ng/ml in 80% of simulated infants at week 1 and 59% at week 4 of treatment. Developmental changes in fluconazole clearance are best predicted by serum creatinine in this population. A twice-weekly dose of 6 mg/kg achieves appropriate levels for prevention of invasive candidiasis in extremely premature infants

    Population Pharmacokinetics of Fluconazole in Premature Infants with Birth Weights Less than 750 Grams

    No full text
    Fluconazole is an effective agent for prophylaxis of invasive candidiasis in premature infants. The objective of this study was to characterize the population pharmacokinetics (PK) and dosing requirements of fluconazole in infants with birth weights of <750 g. As part of a randomized clinical trial, infants born at <750 g birth weight received intravenous (i.v.) or oral fluconazole at 6 mg/kg of body weight twice weekly. Fluconazole plasma concentrations from samples obtained by either scheduled or scavenged sampling were measured using a liquid chromatography-tandem mass spectrometry assay. Population PK analysis was conducted using NONMEM 7.2. Population PK parameters were allometrically scaled by body weight. Covariates were evaluated by univariable screening followed by multivariable assessment. Fluconazole exposures were simulated in premature infants using the final PK model. A population PK model was developed from 141 infants using 604 plasma samples. Plasma fluconazole PK were best described by a one-compartment model with first-order elimination. Only serum creatinine was an independent predictor for clearance in the final model. The typical population parameter estimate for oral bioavailability in the final model was 99.5%. Scavenged samples did not bias the parameter estimates and were as informative as scheduled samples. Simulations indicated that the study dose maintained fluconazole troughs of >2,000 ng/ml in 80% of simulated infants at week 1 and 59% at week 4 of treatment. Developmental changes in fluconazole clearance are best predicted by serum creatinine in this population. A twice-weekly dose of 6 mg/kg achieves appropriate levels for prevention of invasive candidiasis in extremely premature infants
    corecore