133 research outputs found
BUDDI-MaNGA III: The mass-assembly histories of bulges and discs of spiral galaxies
The many unique properties of galaxies are shaped by physical processes that
affect different components of the galaxy - like the bulges and discs - in
different ways, and leave characteristic imprints on the light and spectra of
these components. Disentangling their spectra can reveal vital clues that can
be traced back in time to understand how galaxies, and their components, form
and evolve throughout their lifetimes. With BUDDI, we have decomposed the IFU
datacubes in SDSS-MaNGA DR17 into a S\'ersic bulge component and an exponential
disc component and extracted their clean bulge and disc spectra. BUDDI-MaNGA is
the first and largest statistical sample of such decomposed spectra of 1452
galaxies covering morphologies from ellipticals to late-type spirals. We
derived stellar masses of the individual components with SED fitting using
BAGPIPES and estimated their mean mass-weighted stellar metallicities and
stellar ages using pPXF. With this information in place, we reconstructed the
mass assembly histories of the bulges and discs of the 968 spiral galaxies
(Sa-Sm Types) in this sample to look for systematic trends with respect to
stellar mass and morphology. Our results show a clear downsizing effect
especially in the bulges, with more massive components assembling earlier and
faster than the less massive ones. Additionally, on comparing the stellar
populations of the bulges and discs in these galaxies, we find that a majority
of the bulges host more metal-rich and older stars than their disc
counterparts. Nevertheless, we also find that there exists a non-negligible
fraction of the spiral galaxy population in our sample with bulges that are
younger and more metal-rich than their discs. We interpret these results,
taking into account how their formation histories and current stellar
populations depend on stellar mass and morphology.Comment: 30 pages, 17 figures, accepted for publication in A&A; typos
correcte
Infant nutrition and allergy
The correct nutrition in the first year of a childβs life is an important factor determining the physical and intellectual capabilities of a person at a later age and has an important meaning to the risk of developing a food allergy. The aim of our study was to determine whether breastfeeding practices, including exceptional breastfeeding, and using hydrolysed milk alter the risk of developing a food allergy in infants. Material and Methods: We tracked 180 healthy infants up to the age of one year old and 94 β with manifestations of allergy. The statistical processing and visualisation of the results were done with the products Statgraphics Plus and Microsoft Excel. Results: The success of breastfeeding in the monitored mothers in terms of duration of breastfeeding was influenced by the level of education, ethnicity and current place of residence. In normal birth and caesarean delivery, healthy children are breastfed over 7 months of age, while children with manifestations of allergy β up to 1-2 months of age. Among the monitored by us children food allergy was seen more frequently in infants with low birth weight.Β More commonly during the first year we observed skin-gastrointestinal form toward cowβs milk proteins. Among the observed children with allergic manifestation we found elevated levels of immunoglobin E(36,5IU/ml), eosinophiles β over 7%, anaemic syndrome β 40,5%. About 93% of children with initial manifestations of allergy were fed milk for infants, 4,3% were on mixed feeding (breast milk and supplementation with infant milk), 2,1 - on exceptional breastfeeding. Conclusion: The frequent clinical manifestation of allergic colitis and confirmation of allergy to cow's milk with immunoglobulin E and eosinophils require the introduction of an elimination diet and prolonged feeding with protein hydrolysate 6-12 months
Spatially Extended Low Ionization Emission Regions (LIERs) at
We present spatially resolved emission diagnostics for eight
galaxies that demonstrate extended low ionization emission-line regions (LIERs)
over kpc scales. Eight candidates are selected based on their spatial extent
and emission line fluxes from slitless spectroscopic observations with the
HST/WFC3 G141 and G800L grisms in the well-studied GOODS survey fields. Five of
the candidates (62.5%) are matched to X-ray counterparts in the \textit{Chandra
X-Ray Observatory} Deep Fields. We modify the traditional
Baldwin-Philips-Terlevich (BPT) emission line diagnostic diagram to use
[SII]/(H+[NII]) instead of [NII]/H to overcome the blending of
[NII] and H+[NII] in the low resolution slitless grism spectra. We
construct emission line ratio maps and place the individual pixels in the
modified BPT. The extended LINER-like emission present in all of our
candidates, coupled with X-Ray properties consistent with star-forming galaxies
and weak [OIII]5007\AA\ detections, is inconsistent with purely
nuclear sources (LINERs) driven by active galactic nuclei. While recent
ground-based integral field unit spectroscopic surveys have revealed
significant evidence for diffuse LINER-like emission in galaxies within the
local universe , this work provides the first evidence for the
non-AGN origin of LINER-like emission out to high redshifts.Comment: 11 pages, 1 table, 6 figures, accepted for publication in the
Astrophysics Journal (ApJ
HFF-DeepSpace photometric catalogs of the 12 Hubble frontier fields, clusters, and parallels : photometry, photometric redshifts, and stellar masses
We present Hubble multi-wavelength photometric catalogs, including (up to) 17 filters with the Advanced Camera for Surveys and Wide Field Camera 3 from the ultra-violet to near-infrared for the Hubble Frontier Fields and associated parallels. We have constructed homogeneous photometric catalogs for all six clusters and their parallels. To further expand these data catalogs, we have added ultra-deep KS-band imaging at 2.2. mu m from the Very Large Telescope HAWK-I and Keck-I MOSFIRE instruments. We also add post-cryogenic Spitzer imaging at 3.6 and 4.5. mu m with the Infrared Array Camera (IRAC), as well as archival IRAC 5.8 and 8.0. mu m imaging when available. We introduce the public release of the multi-wavelength (0.2-8 mu m) photometric catalogs, and we describe the unique steps applied for the construction of these catalogs. Particular emphasis is given to the source detection band, the contamination of light from the bright cluster galaxies (bCGs), and intra-cluster light (ICL). In addition to the photometric catalogs, we provide catalogs of photometric redshifts and stellar population properties. Furthermore, this includes all the images used in the construction of the catalogs, including the combined models of bCGs and ICL, the residual images, segmentation maps, and more. These catalogs are a robust data set of the Hubble Frontier Fields and will be an important aid in designing future surveys, as well as planning follow-up programs with current and future observatories to answer key questions remaining about first light, reionization, the assembly of galaxies, and many more topics, most notably by identifying high-redshift sources to target
Relationships between Haematological Parameters, Biochemical Markers of Iron Metabolism, and Trace Elements in Paediatric Patients under 3 Years with Iron Deficiency Anaemia
ΠΠ΅ΡΡΡΠΈΡ Π·Π°Π»ΡΠ·Π° Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ Π΄ΠΈΡΠ±Π°Π»Π°Π½Ρ ΡΠ½ΡΠΈΡ
ΠΌΡΠΊΡΠΎ- Ρ ΠΌΠ°ΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ², ΡΠΎ ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎ ΠΏΠΎΡΡΡΠ΅Π½Π½Ρ ΠΎΠ±ΠΌΡΠ½Ρ Π±ΡΠ»ΡΡΠΎΡΡΡ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ² Ρ ΡΠΎΠ·Π²ΠΈΡΠΊΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΈΡ
ΠΊΠ»ΡΠ½ΡΡΠ½ΠΈΡ
ΡΠΈΠΌΠΏΡΠΎΠΌΡΠ². ΠΠ·Π°ΡΠΌΠΎΠ΄ΡΡ Ρ ΠΊΠΎΡΠ΅Π»ΡΡΡΡ ΠΌΡΠΆ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΡΠ° Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π΄ΠΎΡΡ Π½Π΅ ΡΡΠ½Π°. ΠΠ΅ΡΠ°. ΠΠΈΠ²ΡΠΈΡΠΈ Π²Π·Π°ΡΠΌΠΎΠ·Π²'ΡΠ·ΠΊΠΈ ΠΌΡΠΆ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ, Π±ΡΠΎΡ
ΡΠΌΡΡΠ½ΠΈΠΌΠΈ ΠΌΠ°ΡΠΊΠ΅ΡΠ°ΠΌΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΡΠ·ΠΌΡ Π·Π°Π»ΡΠ·Π° Ρ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ Ρ Π΄ΡΡΠ΅ΠΉ Π²ΡΠΊΠΎΠΌ Π΄ΠΎ 3 ΡΠΎΠΊΡΠ² ΡΠ· Π·Π°Π»ΡΠ·ΠΎΠ΄Π΅ΡΡΡΠΈΡΠ½ΠΎΡ Π°Π½Π΅ΠΌΡΡΡ (ΠΠΠ). ΠΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈ. ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π²ΠΊΠ»ΡΡΠ°Π»ΠΎ 86 ΠΏΠ°ΡΡΡΠ½ΡΡΠ² Π²ΡΠ΄ 0 Π΄ΠΎ 3 ΡΠΎΠΊΡΠ² Π· ΠΊΠ»ΡΠ½ΡΡΠ½ΠΈΠΌΠΈ Ρ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΈΠΌΠΈ ΠΎΠ·Π½Π°ΠΊΠ°ΠΌΠΈ ΠΠΠ. 38 Π΄ΡΡΠ΅ΠΉ Π±ΡΠ»ΠΈ Π· ΡΠ½ΡΠ²Π΅ΡΡΠΈΡΠ΅ΡΡΡΠΊΠΎΡ Π»ΡΠΊΠ°ΡΠ½Ρ ΠΌΠ΅Π΄ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΡΠ²Π΅ΡΡΠΈΡΠ΅ΡΡ ΠΌ.ΠΠ»Π΅Π²Π΅Π½, ΠΠΎΠ»Π³Π°ΡΡΡ - Π-ΡΠ° Π³ΡΡΠΏΠ°, Ρ 48 Π±ΡΠ»ΠΈ ΠΏΠ°ΡΡΡΠ½ΡΠ°ΠΌΠΈ Π‘ΡΠΌΡΡΠΊΠΎΡ ΠΎΠ±Π»Π°ΡΠ½ΠΎΡ Π΄ΠΈΡΡΡΠΎΡ ΠΊΠ»ΡΠ½ΡΡΠ½ΠΎΡ Π»ΡΠΊΠ°ΡΠ½Ρ, ΠΌ.Π‘ΡΠΌΠΈ, Π£ΠΊΡΠ°ΡΠ½Π° - Π³ΡΡΠΏΠ° II. ΠΡΡΠΏΠ° ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ Π²ΠΊΠ»ΡΡΠ°Π»Π° 25 Π·Π΄ΠΎΡΠΎΠ²ΠΈΡ
Π΄ΡΡΠ΅ΠΉ ΡΠΎΠ³ΠΎ ΠΆ Π²ΡΠΊΡ. ΠΠ΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΡΡΠ½Ρ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Ρ Π΅ΡΠΈΡΡΠΎΡΠΈΡΠ°ΡΠ½Ρ ΡΠ½Π΄Π΅ΠΊΡΠΈ Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈΡΡ Π½Π° Π°Π½Π°Π»ΡΠ·Π°ΡΠΎΡΡ MICROS - 18 (ABX). Π‘ΠΈΡΠΎΠ²Π°ΡΠΊΠΎΠ²ΠΈΠΉ Π΅ΡΠΈΡΡΠΎΠΏΠΎΠ΅ΡΠΈΠ½ (ΡΠΠΠ) Ρ ΡΠ΅ΡΠΈΡΠΈΠ½ (sFR) Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈ ΡΠΌΡΠ½ΠΎΡΠ΅ΡΠΌΠ΅Π½ΡΠ½ΠΈΠΌ Π°Π½Π°Π»ΡΠ·ΠΎΠΌ. Π‘ΠΈΡΠΎΠ²Π°ΡΠΊΠΎΠ²ΠΈΠΉ Π²ΠΌΡΡΡ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ² Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΡΠ½ΠΎ (I Π³ΡΡΠΏΠ°) Π°Π±ΠΎ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ Π°ΡΠΎΠΌΠ½ΠΎ- Π°Π±ΡΠΎΡΠ±ΡΡΠΉΠ½ΠΎΡ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΡΡ (II Π³ΡΡΠΏΠ°). ΠΠ»Ρ ΠΎΡΡΠ½ΠΊΠΈ Π²Π·Π°ΡΠΌΠΎΠ·Π²'ΡΠ·ΠΊΡ ΠΌΡΠΆ ΠΌΠ°ΡΠΊΠ΅ΡΠ°ΠΌΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΡΠ·ΠΌΡ Π·Π°Π»ΡΠ·Π° ΡΠ° Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π»ΠΈ ΠΊΠΎΠ΅ΡΡΡΡΡΠ½Ρ ΠΊΠΎΡΠ΅Π»ΡΡΡΡ Π‘ΠΏΡΡΠΌΠ΅Π½Π°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ. Π ΠΎΠ·Π²ΠΈΡΠΎΠΊ ΠΠΠ ΠΎΠ±ΡΠΌΠΎΠ²Π»Π΅Π½ΠΈΠΉ Π½Π΅ Π»ΠΈΡΠ΅ ΠΏΠΎΡΡΡΠ΅Π½Π½ΡΠΌ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΡΠ·ΠΌΡ Π·Π°Π»ΡΠ·Π°, Π°Π»Π΅ ΠΉ ΡΠ½ΡΠΈΡ
ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ², ΡΠΊΡ ΠΏΡΡΠΌΠΎ ΡΠΈ ΠΎΠΏΠΎΡΠ΅ΡΠ΅Π΄ΠΊΠΎΠ²Π°Π½ΠΎ ΠΌΠΎΠΆΡΡΡ Π²ΠΏΠ»ΠΈΠ²Π°ΡΠΈ ΡΠΊ ΠΎΠ±ΠΌΡΠ½ Π·Π°Π»ΡΠ·Π°, ΡΠ°ΠΊ Ρ Π½Π° ΡΠ΅Π³ΡΠ»ΡΡΡΡ Π΅ΡΠΈΡΡΠΎΠΏΠΎΠ΅Π·Ρ ΡΠ΅ΡΠ΅Π· ΠΏΡΠΎΠ΄ΡΠΊΡΡΡ Π΅ΡΠΈΡΡΠΎΠΏΠΎΠ΅ΡΠΈΠ½Ρ. ΠΠΈ Π·Π½Π°ΠΉΡΠ»ΠΈ Π΄ΠΎΡΡΠΎΠ²ΡΡΠ½Ρ ΠΊΠΎΡΠ΅Π»ΡΡΡΡ ΠΌΡΠΆ ΡΡΠ²Π½Π΅ΠΌ Ρ
ΡΠΎΠΌΡ Ρ Π½Π°ΡΠΈΡΠ΅Π½Π½ΡΠΌ ΡΡΠ°Π½ΡΡΠ΅ΡΠΈΠ½Ρ (r = -0,382, Ρ = 0,018), ΡΠΈΠ½ΠΊΡ Ρ ΡEΠO (r = 0,543, Ρ = 0,036), ΠΌΡΠ΄Ρ Ρ sFR (r = -0,561, Ρ = 0,029), Ρ cΠΠΠ (r = -0,739, Ρ = 0,0016), ΠΊΠΎΠ±Π°Π»ΡΡa Ρ ΡEPO (r = 0,769, Ρ = 0,0021), ΡΠΎ Π²ΠΊΠ°Π·ΡΡ Π½Π° ΡΠΎΠ»Ρ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ² Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Ρ ΠΠΠ. Π’Π°ΠΊΠΈΠΌ ΡΠΈΠ½ΠΎΠΌ, ΡΠΊΡΠΎ Π·Π²ΠΈΡΠ°ΠΉΠ½Π° ΡΠ΅ΡΠ°ΠΏΡΡ ΠΠΠ Ρ Π½Π΅Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡ, Π½Π΅ΠΎΠ±Ρ
ΡΠ΄Π½ΠΎ Π²ΠΈΠΊΠ»ΡΡΠ°ΡΠΈ ΡΡΠΏΡΡΠ½Ρ ΠΏΠΎΡΡΡΠ΅Π½Π½Ρ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π°Π½ΡΡ Π· ΠΎΡΡΠ½ΠΊΠΎΡ ΡΡΠ²Π½Ρ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ², Π° Π·Π° Π½Π΅ΠΎΠ±Ρ
ΡΠ΄Π½ΠΎΡΡΡ ΠΏΠΎΠ²ΠΈΠ½Π½Π° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΠΈΡΡ ΠΊΠΎΡΠ΅ΠΊΡΡΡ.
ΠΡΠΈ ΡΠΈΡΡΠ²Π°Π½Π½Ρ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°, Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠΉΡΠ΅ ΠΏΠΎΡΠΈΠ»Π°Π½Π½Ρ http://essuir.sumdu.edu.ua/handle/123456789/36824ΠΠ΅ΡΠΈΡΠΈΡ ΠΆΠ΅Π»Π΅Π·Π° Π²ΡΠ·ΡΠ²Π°Π΅Ρ Π΄ΠΈΡΠ±Π°Π»Π°Π½Ρ Π΄ΡΡΠ³ΠΈΡ
ΠΌΠΈΠΊΡΠΎ- ΠΈ ΠΌΠ°ΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΎΠ±ΠΌΠ΅Π½Π° Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ
ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΠΌΠΏΡΠΎΠΌΠΎΠ². ΠΠ·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΈ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΠΈ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π΄ΠΎ ΡΠΈΡ
ΠΏΠΎΡ Π½Π΅ ΡΡΠ½Π°. Π¦Π΅Π»Ρ. ΠΠ·ΡΡΠΈΡΡ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ, Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΌΠ°ΡΠΊΠ΅ΡΠ°ΠΌΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π° ΠΈ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ Ρ Π΄Π΅ΡΠ΅ΠΉ Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ Π΄ΠΎ 3 Π»Π΅Ρ Ρ ΠΆΠ΅Π»Π΅Π·ΠΎΠ΄Π΅ΡΠΈΡΠΈΡΠ½ΠΎΠΉ Π°Π½Π΅ΠΌΠΈΠ΅ΠΉ (ΠΠΠ). ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠ°Π»ΠΎ 86 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΎΡ 0 Π΄ΠΎ 3 Π»Π΅Ρ Ρ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΠΌΠΈ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ ΠΠΠ. 38 Π΄Π΅ΡΠ΅ΠΉ Π±ΡΠ»ΠΈ ΠΈΠ· ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΡΠΊΠΎΠΉ Π±ΠΎΠ»ΡΠ½ΠΈΡΡ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ° Π³.ΠΠ»Π΅Π²Π΅Π½, ΠΠΎΠ»Π³Π°ΡΠΈΡ - Π-Ρ Π³ΡΡΠΏΠΏΠ°, ΠΈ 48 Π±ΡΠ»ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ Π‘ΡΠΌΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠ½ΠΎΠΉ Π΄Π΅ΡΡΠΊΠΎΠΉ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»ΡΠ½ΠΈΡΡ, Π³.Π‘ΡΠΌΡ, Π£ΠΊΡΠ°ΠΈΠ½Π° - Π³ΡΡΠΏΠΏΠ° II. ΠΡΡΠΏΠΏΠ° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΠΊΠ»ΡΡΠ°Π»Π° 25 Π·Π΄ΠΎΡΠΎΠ²ΡΡ
Π΄Π΅ΡΠ΅ΠΉ ΡΠΎΠ³ΠΎ ΠΆΠ΅ Π²ΠΎΠ·ΡΠ°ΡΡΠ°. ΠΠ΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΠΈ ΡΡΠΈΡΡΠΎΡΠΈΡΠ°ΡΠ½ΡΠ΅ ΠΈΠ½Π΄Π΅ΠΊΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈΡΡ Π½Π° Π°Π½Π°Π»ΠΈΠ·Π°ΡΠΎΡΠ΅ MICROS - 18 (ABX). Π‘ΡΠ²ΠΎΡΠΎΡΠ½ΡΠΉ ΡΡΠΈΡΡΠΎΠΏΠΎΡΡΠΈΠ½ (ΡΠΠΠ) ΠΈ ΡΠ΅ΡΡΠΈΡΠΈΠ½ (sFR) ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈΡΡ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅ΡΠΌΠ΅Π½ΡΠ½ΡΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ. Π‘ΡΠ²ΠΎΡΠΎΡΠΎΡΠ½ΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈ (I Π³ΡΡΠΏΠΏΠ°) ΠΈΠ»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π°ΡΠΎΠΌΠ½ΠΎ- Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΠΈ (II Π³ΡΡΠΏΠΏΠ°). ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΠΌΠ°ΡΠΊΠ΅ΡΠ°ΠΌΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π° ΠΈ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ Π‘ΠΏΠΈΡΠΌΠ΅Π½Π°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π Π°Π·Π²ΠΈΡΠΈΠ΅ ΠΠΠ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ΠΎ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π°, Π½ΠΎ ΠΈ Π΄ΡΡΠ³ΠΈΡ
ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΡΠΌΠΎ ΠΈΠ»ΠΈ ΠΊΠΎΡΠ²Π΅Π½Π½ΠΎ ΠΌΠΎΠ³ΡΡ Π²Π»ΠΈΡΡΡ ΠΊΠ°ΠΊ ΠΎΠ±ΠΌΠ΅Π½ ΠΆΠ΅Π»Π΅Π·Π°, ΡΠ°ΠΊ ΠΈ Π½Π° ΡΠ΅Π³ΡΠ»ΡΡΠΈΡ ΡΡΠΈΡΡΠΎΠΏΠΎΡΠ·Π° ΡΠ΅ΡΠ΅Π· ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΡ ΡΡΠΈΡΡΠΎΠΏΠΎΡΡΠΈΠ½Π°. ΠΡ Π½Π°ΡΠ»ΠΈ Π·Π½Π°ΡΠΈΠΌΡΠ΅ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΎΠ²Π½Π΅ΠΌ Ρ
ΡΠΎΠΌΠ° ΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ°Π½ΡΡΠ΅ΡΡΠΈΠ½Π° (r = -0,382, Ρ = 0,018), ΡΠΈΠ½ΠΊΠ° - ΠΈ ΡΠΠO (r = 0,543, Ρ = 0,036), ΠΌΠ΅Π΄ΠΈ ΠΈ sFR (r = -0,561, Ρ = 0,029), ΠΈ cΠΠΠ (r= -0,739, Ρ = 0,0016), ΠΊΠΎΠ±Π°Π»ΡΡa ΠΈ ΡΠΠO (r = 0,769, Ρ = 0,0021), ΡΡΠΎ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° ΡΠΎΠ»Ρ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π΅ ΠΠΠ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΅ΡΠ»ΠΈ ΠΎΠ±ΡΡΠ½Π°Ρ ΡΠ΅ΡΠ°ΠΏΠΈΡ ΠΠΠ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΊΠ»ΡΡΠ°ΡΡ ΡΠΎΠΏΡΡΡΡΠ²ΡΡΡΠ΅Π΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π»Π°Π½ΡΠ° Ρ ΠΎΡΠ΅Π½ΠΊΠΎΠΉ ΡΡΠΎΠ²Π½Ρ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², Π° ΠΏΡΠΈ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡΡ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΡ.
ΠΡΠΈ ΡΠΈΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ ΡΡΡΠ»ΠΊΡ http://essuir.sumdu.edu.ua/handle/123456789/36824Iron deficiency causes disbalance of other micro- and macroelements that leads to disruption of the exchange of most micronutrients and development of characteristic clinical symptoms. Interaction and correlation between trace elements and
haematological parameters is still not clear. Aim. To investigate the relationship between haematological parameters, biochemical markers of iron metabolism and trace elements in children under 3 years with Iron-deficiency anaemia (IDA). Materials and Methods.
Investigation comprises 86 patients from 0 to 3 years of age with clinical and laboratory signs of IDA. 38 children-patients are of the University Hospital, Medical University β Pleven, Bulgaria β I group, and 48 are patients of the Sumy Regional Childβs Clinical Hospital, Sumy, Ukraine β II group. Comparison group includes 25 healthy children at the same age. Haematological parameters and the red cell indices were examined by analyzer MICROS β 18 (ABX). The serum erythropoietin (sEPO) and ferritin (sFR) levels were determined by ELISA. Serum content of trace elements was determined spectrophotometrically (I group) or by atomic absorption
spectrophotometry (II group). To evaluate a relationship between markers of iron metabolism and haematological parameters we have used Spearman's correlation coefficients. Results. Formation of IDA is caused not only by violation of iron metabolism, but also other trace elements that directly or indirectly may affect both iron exchange and erythropoiesis regulation through the erythropoietin production. We found significant correlations between the level of chromium and transferrin saturation (r = -0.382, p = 0.018), zinc β with sEPO (r = 0.543, p = 0.036), copper β with sFR (r = -0.561, p
= 0.029), and sEPO (r = -0.739, p = 0.0016), and cobalt β with sEPO (r = 0.769, p = 0.0021), that indicate the role of trace elements in the pathogenesis of IDA. Thus, if the routine therapy of IDA is ineffective, a concomitant micronutrient disorder should be considered, with an evaluation of trace elements level, and, if necessary, a correction should be carried out.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3682
The MUSE Ultra Deep Field (MUDF). V. Characterizing the Mass-Metallicity Relation for Low Mass Galaxies at -
Using more than 100 galaxies in the MUSE Ultra Deep Field with spectroscopy
from the Hubble Space Telescope's Wide Field Camera 3 and the Very Large
Telescope's Multi Unit Spectroscopic Explorer, we extend the gas-phase
mass-metallicity relation (MZR) at 1-2 down to stellar
masses of M 10 M. The sample reaches six
times lower in stellar mass and star formation rate (SFR) than previous HST
studies at these redshifts, and we find that galaxy metallicities decrease to
log(O/H) + 12 7.8 0.1 (15% solar) at
log(M/M) 7.5, without evidence of a turnover in
the shape of the MZR at low masses. We validate our strong-line metallicities
using the direct method for sources with [O III] 4363 and [O III]
1666 detections, and find excellent agreement between the techniques.
The [O III] 1666-based metallicities double existing measurements with
S/N 5 for unlensed sources at 1, validating the strong-line
calibrations up to 2.5. We confirm that the MZR resides 0.3 dex
lower in metallicity than local galaxies and is consistent with the fundamental
metallicity relation (FMR) if the low mass slope varies with SFR. At lower
redshifts (0.5) our sample reaches 0.5 dex lower in SFR than
current calibrations and we find enhanced metallicities that are consistent
with extrapolating the MZR to lower SFRs. Finally, we detect only a 0.1
dex difference in the metallicities of galaxies in groups versus isolated
environments. These results are based on robust calibrations and reach the
lowest masses and SFRs that are accessible with HST, providing a critical
foundation for studies with the Webb and Roman Space Telescopes.Comment: Accepted for publication in ApJ on March 23, 2024. The paper has 29
pages, 12 figures, and 6 tables. The calibrated data are available through
MAST at: https://archive.stsci.edu/hlsp/mud
Stellar Half-Mass Radii of Galaxies: Comparison with JWST/NIRCam Half-Light Radii
We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles
of 500 galaxies in the redshift range .
We compare the resulting rest-frame 1.5-2m half-light radii
() with stellar half-mass radii (\rmass) derived with multi-color
light profiles from CANDELS HST imaging. In general agreement with previous
work, we find that and \rmass~are up to 40\%~smaller than the
rest-frame optical half-light radius . The agreement between
and \rmass~is excellent, with negligible systematic offset
(0.03 dex) up to for quiescent galaxies and up to for
star-forming galaxies. We also deproject the profiles to estimate \rmassd, the
radius of a sphere containing 50\% of the stellar mass. We present the
distribution of galaxies at , comparing ,
\rmass~and \rmassd. The slope is significantly flatter for \rmass~and \rmassd~
compared to , mostly due to downward shifts in size for massive
star-forming galaxies, while \rmass~and \rmassd~do not show markedly different
trends. Finally, we show rapid size evolution ()
for massive () quiescent galaxies between and
, again comparing , \rmass~and \rmassd. We conclude that
the main tenets of the size evolution narrative established over the past 20
years, based on rest-frame optical light profile analysis, still hold in the
era of JWST/NIRCam observations in the rest-frame near-IR.Comment: Submitted to ApJ. Comments welcom
Relationships between Haematological Parameters, Biochemical Markers of Iron Metabolism, and Trace Elements in Paediatric Patients under 3 Years with Iron Deficiency Anaemia
ΠΠ΅ΡΡΡΠΈΡ Π·Π°Π»ΡΠ·Π° Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ Π΄ΠΈΡΠ±Π°Π»Π°Π½Ρ ΡΠ½ΡΠΈΡ
ΠΌΡΠΊΡΠΎ- Ρ ΠΌΠ°ΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ², ΡΠΎ ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎ ΠΏΠΎΡΡΡΠ΅Π½Π½Ρ ΠΎΠ±ΠΌΡΠ½Ρ Π±ΡΠ»ΡΡΠΎΡΡΡ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ² Ρ ΡΠΎΠ·Π²ΠΈΡΠΊΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΈΡ
ΠΊΠ»ΡΠ½ΡΡΠ½ΠΈΡ
ΡΠΈΠΌΠΏΡΠΎΠΌΡΠ². ΠΠ·Π°ΡΠΌΠΎΠ΄ΡΡ Ρ ΠΊΠΎΡΠ΅Π»ΡΡΡΡ ΠΌΡΠΆ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΡΠ° Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π΄ΠΎΡΡ Π½Π΅ ΡΡΠ½Π°. ΠΠ΅ΡΠ°. ΠΠΈΠ²ΡΠΈΡΠΈ Π²Π·Π°ΡΠΌΠΎΠ·Π²'ΡΠ·ΠΊΠΈ ΠΌΡΠΆ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ, Π±ΡΠΎΡ
ΡΠΌΡΡΠ½ΠΈΠΌΠΈ ΠΌΠ°ΡΠΊΠ΅ΡΠ°ΠΌΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΡΠ·ΠΌΡ Π·Π°Π»ΡΠ·Π° Ρ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ Ρ Π΄ΡΡΠ΅ΠΉ Π²ΡΠΊΠΎΠΌ Π΄ΠΎ 3 ΡΠΎΠΊΡΠ² ΡΠ· Π·Π°Π»ΡΠ·ΠΎΠ΄Π΅ΡΡΡΠΈΡΠ½ΠΎΡ Π°Π½Π΅ΠΌΡΡΡ (ΠΠΠ). ΠΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈ. ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π²ΠΊΠ»ΡΡΠ°Π»ΠΎ 86 ΠΏΠ°ΡΡΡΠ½ΡΡΠ² Π²ΡΠ΄ 0 Π΄ΠΎ 3 ΡΠΎΠΊΡΠ² Π· ΠΊΠ»ΡΠ½ΡΡΠ½ΠΈΠΌΠΈ Ρ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΈΠΌΠΈ ΠΎΠ·Π½Π°ΠΊΠ°ΠΌΠΈ ΠΠΠ. 38 Π΄ΡΡΠ΅ΠΉ Π±ΡΠ»ΠΈ Π· ΡΠ½ΡΠ²Π΅ΡΡΠΈΡΠ΅ΡΡΡΠΊΠΎΡ Π»ΡΠΊΠ°ΡΠ½Ρ ΠΌΠ΅Π΄ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΡΠ²Π΅ΡΡΠΈΡΠ΅ΡΡ ΠΌ.ΠΠ»Π΅Π²Π΅Π½, ΠΠΎΠ»Π³Π°ΡΡΡ - Π-ΡΠ° Π³ΡΡΠΏΠ°, Ρ 48 Π±ΡΠ»ΠΈ ΠΏΠ°ΡΡΡΠ½ΡΠ°ΠΌΠΈ Π‘ΡΠΌΡΡΠΊΠΎΡ ΠΎΠ±Π»Π°ΡΠ½ΠΎΡ Π΄ΠΈΡΡΡΠΎΡ ΠΊΠ»ΡΠ½ΡΡΠ½ΠΎΡ Π»ΡΠΊΠ°ΡΠ½Ρ, ΠΌ.Π‘ΡΠΌΠΈ, Π£ΠΊΡΠ°ΡΠ½Π° - Π³ΡΡΠΏΠ° II. ΠΡΡΠΏΠ° ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ Π²ΠΊΠ»ΡΡΠ°Π»Π° 25 Π·Π΄ΠΎΡΠΎΠ²ΠΈΡ
Π΄ΡΡΠ΅ΠΉ ΡΠΎΠ³ΠΎ ΠΆ Π²ΡΠΊΡ. ΠΠ΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΡΡΠ½Ρ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Ρ Π΅ΡΠΈΡΡΠΎΡΠΈΡΠ°ΡΠ½Ρ ΡΠ½Π΄Π΅ΠΊΡΠΈ Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈΡΡ Π½Π° Π°Π½Π°Π»ΡΠ·Π°ΡΠΎΡΡ MICROS - 18 (ABX). Π‘ΠΈΡΠΎΠ²Π°ΡΠΊΠΎΠ²ΠΈΠΉ Π΅ΡΠΈΡΡΠΎΠΏΠΎΠ΅ΡΠΈΠ½ (ΡΠΠΠ) Ρ ΡΠ΅ΡΠΈΡΠΈΠ½ (sFR) Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈ ΡΠΌΡΠ½ΠΎΡΠ΅ΡΠΌΠ΅Π½ΡΠ½ΠΈΠΌ Π°Π½Π°Π»ΡΠ·ΠΎΠΌ. Π‘ΠΈΡΠΎΠ²Π°ΡΠΊΠΎΠ²ΠΈΠΉ Π²ΠΌΡΡΡ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ² Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΡΠ½ΠΎ (I Π³ΡΡΠΏΠ°) Π°Π±ΠΎ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ Π°ΡΠΎΠΌΠ½ΠΎ- Π°Π±ΡΠΎΡΠ±ΡΡΠΉΠ½ΠΎΡ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΡΡ (II Π³ΡΡΠΏΠ°). ΠΠ»Ρ ΠΎΡΡΠ½ΠΊΠΈ Π²Π·Π°ΡΠΌΠΎΠ·Π²'ΡΠ·ΠΊΡ ΠΌΡΠΆ ΠΌΠ°ΡΠΊΠ΅ΡΠ°ΠΌΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΡΠ·ΠΌΡ Π·Π°Π»ΡΠ·Π° ΡΠ° Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π»ΠΈ ΠΊΠΎΠ΅ΡΡΡΡΡΠ½Ρ ΠΊΠΎΡΠ΅Π»ΡΡΡΡ Π‘ΠΏΡΡΠΌΠ΅Π½Π°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ. Π ΠΎΠ·Π²ΠΈΡΠΎΠΊ ΠΠΠ ΠΎΠ±ΡΠΌΠΎΠ²Π»Π΅Π½ΠΈΠΉ Π½Π΅ Π»ΠΈΡΠ΅ ΠΏΠΎΡΡΡΠ΅Π½Π½ΡΠΌ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΡΠ·ΠΌΡ Π·Π°Π»ΡΠ·Π°, Π°Π»Π΅ ΠΉ ΡΠ½ΡΠΈΡ
ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ², ΡΠΊΡ ΠΏΡΡΠΌΠΎ ΡΠΈ ΠΎΠΏΠΎΡΠ΅ΡΠ΅Π΄ΠΊΠΎΠ²Π°Π½ΠΎ ΠΌΠΎΠΆΡΡΡ Π²ΠΏΠ»ΠΈΠ²Π°ΡΠΈ ΡΠΊ ΠΎΠ±ΠΌΡΠ½ Π·Π°Π»ΡΠ·Π°, ΡΠ°ΠΊ Ρ Π½Π° ΡΠ΅Π³ΡΠ»ΡΡΡΡ Π΅ΡΠΈΡΡΠΎΠΏΠΎΠ΅Π·Ρ ΡΠ΅ΡΠ΅Π· ΠΏΡΠΎΠ΄ΡΠΊΡΡΡ Π΅ΡΠΈΡΡΠΎΠΏΠΎΠ΅ΡΠΈΠ½Ρ. ΠΠΈ Π·Π½Π°ΠΉΡΠ»ΠΈ Π΄ΠΎΡΡΠΎΠ²ΡΡΠ½Ρ ΠΊΠΎΡΠ΅Π»ΡΡΡΡ ΠΌΡΠΆ ΡΡΠ²Π½Π΅ΠΌ Ρ
ΡΠΎΠΌΡ Ρ Π½Π°ΡΠΈΡΠ΅Π½Π½ΡΠΌ ΡΡΠ°Π½ΡΡΠ΅ΡΠΈΠ½Ρ (r = -0,382, Ρ = 0,018), ΡΠΈΠ½ΠΊΡ Ρ ΡEΠO (r = 0,543, Ρ = 0,036), ΠΌΡΠ΄Ρ Ρ sFR (r = -0,561, Ρ = 0,029), Ρ cΠΠΠ (r = -0,739, Ρ = 0,0016), ΠΊΠΎΠ±Π°Π»ΡΡa Ρ ΡEPO (r = 0,769, Ρ = 0,0021), ΡΠΎ Π²ΠΊΠ°Π·ΡΡ Π½Π° ΡΠΎΠ»Ρ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ² Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Ρ ΠΠΠ. Π’Π°ΠΊΠΈΠΌ ΡΠΈΠ½ΠΎΠΌ, ΡΠΊΡΠΎ Π·Π²ΠΈΡΠ°ΠΉΠ½Π° ΡΠ΅ΡΠ°ΠΏΡΡ ΠΠΠ Ρ Π½Π΅Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡ, Π½Π΅ΠΎΠ±Ρ
ΡΠ΄Π½ΠΎ Π²ΠΈΠΊΠ»ΡΡΠ°ΡΠΈ ΡΡΠΏΡΡΠ½Ρ ΠΏΠΎΡΡΡΠ΅Π½Π½Ρ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π°Π½ΡΡ Π· ΠΎΡΡΠ½ΠΊΠΎΡ ΡΡΠ²Π½Ρ ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ², Π° Π·Π° Π½Π΅ΠΎΠ±Ρ
ΡΠ΄Π½ΠΎΡΡΡ ΠΏΠΎΠ²ΠΈΠ½Π½Π° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΠΈΡΡ ΠΊΠΎΡΠ΅ΠΊΡΡΡ.
ΠΡΠΈ ΡΠΈΡΡΠ²Π°Π½Π½Ρ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°, Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠΉΡΠ΅ ΠΏΠΎΡΠΈΠ»Π°Π½Π½Ρ http://essuir.sumdu.edu.ua/handle/123456789/36824ΠΠ΅ΡΠΈΡΠΈΡ ΠΆΠ΅Π»Π΅Π·Π° Π²ΡΠ·ΡΠ²Π°Π΅Ρ Π΄ΠΈΡΠ±Π°Π»Π°Π½Ρ Π΄ΡΡΠ³ΠΈΡ
ΠΌΠΈΠΊΡΠΎ- ΠΈ ΠΌΠ°ΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΎΠ±ΠΌΠ΅Π½Π° Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ
ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΠΌΠΏΡΠΎΠΌΠΎΠ². ΠΠ·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΈ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΠΈ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π΄ΠΎ ΡΠΈΡ
ΠΏΠΎΡ Π½Π΅ ΡΡΠ½Π°. Π¦Π΅Π»Ρ. ΠΠ·ΡΡΠΈΡΡ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ, Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΌΠ°ΡΠΊΠ΅ΡΠ°ΠΌΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π° ΠΈ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ Ρ Π΄Π΅ΡΠ΅ΠΉ Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ Π΄ΠΎ 3 Π»Π΅Ρ Ρ ΠΆΠ΅Π»Π΅Π·ΠΎΠ΄Π΅ΡΠΈΡΠΈΡΠ½ΠΎΠΉ Π°Π½Π΅ΠΌΠΈΠ΅ΠΉ (ΠΠΠ). ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠ°Π»ΠΎ 86 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΎΡ 0 Π΄ΠΎ 3 Π»Π΅Ρ Ρ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΠΌΠΈ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ ΠΠΠ. 38 Π΄Π΅ΡΠ΅ΠΉ Π±ΡΠ»ΠΈ ΠΈΠ· ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΡΠΊΠΎΠΉ Π±ΠΎΠ»ΡΠ½ΠΈΡΡ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΠ° Π³.ΠΠ»Π΅Π²Π΅Π½, ΠΠΎΠ»Π³Π°ΡΠΈΡ - Π-Ρ Π³ΡΡΠΏΠΏΠ°, ΠΈ 48 Π±ΡΠ»ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ Π‘ΡΠΌΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠ½ΠΎΠΉ Π΄Π΅ΡΡΠΊΠΎΠΉ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»ΡΠ½ΠΈΡΡ, Π³.Π‘ΡΠΌΡ, Π£ΠΊΡΠ°ΠΈΠ½Π° - Π³ΡΡΠΏΠΏΠ° II. ΠΡΡΠΏΠΏΠ° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²ΠΊΠ»ΡΡΠ°Π»Π° 25 Π·Π΄ΠΎΡΠΎΠ²ΡΡ
Π΄Π΅ΡΠ΅ΠΉ ΡΠΎΠ³ΠΎ ΠΆΠ΅ Π²ΠΎΠ·ΡΠ°ΡΡΠ°. ΠΠ΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΠΈ ΡΡΠΈΡΡΠΎΡΠΈΡΠ°ΡΠ½ΡΠ΅ ΠΈΠ½Π΄Π΅ΠΊΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈΡΡ Π½Π° Π°Π½Π°Π»ΠΈΠ·Π°ΡΠΎΡΠ΅ MICROS - 18 (ABX). Π‘ΡΠ²ΠΎΡΠΎΡΠ½ΡΠΉ ΡΡΠΈΡΡΠΎΠΏΠΎΡΡΠΈΠ½ (ΡΠΠΠ) ΠΈ ΡΠ΅ΡΡΠΈΡΠΈΠ½ (sFR) ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈΡΡ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅ΡΠΌΠ΅Π½ΡΠ½ΡΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ. Π‘ΡΠ²ΠΎΡΠΎΡΠΎΡΠ½ΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈ (I Π³ΡΡΠΏΠΏΠ°) ΠΈΠ»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π°ΡΠΎΠΌΠ½ΠΎ- Π°Π±ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΠΈ (II Π³ΡΡΠΏΠΏΠ°). ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΠΌΠ°ΡΠΊΠ΅ΡΠ°ΠΌΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π° ΠΈ Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ Π‘ΠΏΠΈΡΠΌΠ΅Π½Π°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π Π°Π·Π²ΠΈΡΠΈΠ΅ ΠΠΠ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ΠΎ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π°, Π½ΠΎ ΠΈ Π΄ΡΡΠ³ΠΈΡ
ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΡΠΌΠΎ ΠΈΠ»ΠΈ ΠΊΠΎΡΠ²Π΅Π½Π½ΠΎ ΠΌΠΎΠ³ΡΡ Π²Π»ΠΈΡΡΡ ΠΊΠ°ΠΊ ΠΎΠ±ΠΌΠ΅Π½ ΠΆΠ΅Π»Π΅Π·Π°, ΡΠ°ΠΊ ΠΈ Π½Π° ΡΠ΅Π³ΡΠ»ΡΡΠΈΡ ΡΡΠΈΡΡΠΎΠΏΠΎΡΠ·Π° ΡΠ΅ΡΠ΅Π· ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΡ ΡΡΠΈΡΡΠΎΠΏΠΎΡΡΠΈΠ½Π°. ΠΡ Π½Π°ΡΠ»ΠΈ Π·Π½Π°ΡΠΈΠΌΡΠ΅ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΎΠ²Π½Π΅ΠΌ Ρ
ΡΠΎΠΌΠ° ΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ°Π½ΡΡΠ΅ΡΡΠΈΠ½Π° (r = -0,382, Ρ = 0,018), ΡΠΈΠ½ΠΊΠ° - ΠΈ ΡΠΠO (r = 0,543, Ρ = 0,036), ΠΌΠ΅Π΄ΠΈ ΠΈ sFR (r = -0,561, Ρ = 0,029), ΠΈ cΠΠΠ (r= -0,739, Ρ = 0,0016), ΠΊΠΎΠ±Π°Π»ΡΡa ΠΈ ΡΠΠO (r = 0,769, Ρ = 0,0021), ΡΡΠΎ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° ΡΠΎΠ»Ρ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π΅ ΠΠΠ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΅ΡΠ»ΠΈ ΠΎΠ±ΡΡΠ½Π°Ρ ΡΠ΅ΡΠ°ΠΏΠΈΡ ΠΠΠ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ, Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΊΠ»ΡΡΠ°ΡΡ ΡΠΎΠΏΡΡΡΡΠ²ΡΡΡΠ΅Π΅ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π»Π°Π½ΡΠ° Ρ ΠΎΡΠ΅Π½ΠΊΠΎΠΉ ΡΡΠΎΠ²Π½Ρ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², Π° ΠΏΡΠΈ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡΡ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΡ.
ΠΡΠΈ ΡΠΈΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ ΡΡΡΠ»ΠΊΡ http://essuir.sumdu.edu.ua/handle/123456789/36824Iron deficiency causes disbalance of other micro- and macroelements that leads to disruption of the exchange of most micronutrients and development of characteristic clinical symptoms. Interaction and correlation between trace elements and
haematological parameters is still not clear. Aim. To investigate the relationship between haematological parameters, biochemical markers of iron metabolism and trace elements in children under 3 years with Iron-deficiency anaemia (IDA). Materials and Methods.
Investigation comprises 86 patients from 0 to 3 years of age with clinical and laboratory signs of IDA. 38 children-patients are of the University Hospital, Medical University β Pleven, Bulgaria β I group, and 48 are patients of the Sumy Regional Childβs Clinical Hospital, Sumy, Ukraine β II group. Comparison group includes 25 healthy children at the same age. Haematological parameters and the red cell indices were examined by analyzer MICROS β 18 (ABX). The serum erythropoietin (sEPO) and ferritin (sFR) levels were determined by ELISA. Serum content of trace elements was determined spectrophotometrically (I group) or by atomic absorption
spectrophotometry (II group). To evaluate a relationship between markers of iron metabolism and haematological parameters we have used Spearman's correlation coefficients. Results. Formation of IDA is caused not only by violation of iron metabolism, but also other trace elements that directly or indirectly may affect both iron exchange and erythropoiesis regulation through the erythropoietin production. We found significant correlations between the level of chromium and transferrin saturation (r = -0.382, p = 0.018), zinc β with sEPO (r = 0.543, p = 0.036), copper β with sFR (r = -0.561, p
= 0.029), and sEPO (r = -0.739, p = 0.0016), and cobalt β with sEPO (r = 0.769, p = 0.0021), that indicate the role of trace elements in the pathogenesis of IDA. Thus, if the routine therapy of IDA is ineffective, a concomitant micronutrient disorder should be considered, with an evaluation of trace elements level, and, if necessary, a correction should be carried out.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3682
The Ultraviolet Luminosity Function at 0.6 < z < 1 from UVCANDELS
Β© 2024. The Author(s). Published by the American Astronomical Society. This work is licensed under the terms of under the terms of the Creative Commons Attribution 4.0 licence: https://creativecommons.org/licenses/by/4.0/UVCANDELS is a Hubble Space Telescope Cycle-26 Treasury Program awarded 164 orbits of primary ultraviolet (UV) F275W imaging and coordinated parallel optical F435W imaging in four CANDELS fieldsβGOODS-N, GOODS-S, EGS, and COSMOSβcovering a total area of βΌ426 arcmin2. This is βΌ2.7 times larger than the area covered by previous deep-field space UV data combined, reaching a depth of about 27 and 28 ABmag (5Ο in 0.β2 apertures) for F275W and F435W, respectively. Along with new photometric catalogs, we present an analysis of the rest-frame UV luminosity function (LF), relying on our UV-optimized aperture photometry method, yielding a factor of 1.5 increase over H-isophot aperture photometry in the signal-to-noise ratios of galaxies in our F275W imaging. Using well-tested photometric redshift measurements, we identify 5810 galaxies at redshifts 0.6 < z < 1, down to an absolute magnitude of M UV = β14.2. In order to minimize the effect of uncertainties in estimating the completeness function, especially at the faint end, we restrict our analysis to sources above 30% completeness, which provides a final sample of 4726 galaxies at β21.5 < M UV < β15.5. We performed a maximum likelihood estimate to derive the best-fit parameters of the UV LF. We report a best-fit faint-end slope of Ξ±=β1.359β0.041+0.041 at z βΌ 0.8. Creating subsamples at z βΌ 0.7 and z βΌ 0.9, we observe a possible evolution of Ξ± with redshift. The unobscured UV luminosity density at M UV < β10 is derived as ΟUV=1.339β0.030+0.027(Γ1026ergsβ1Hzβ1Mpcβ3) using our best-fit LF parameters. The new F275W and F435 photometric catalogs from UVCANDELS have been made publicly available on the Barbara A. Mikulski Archive for Space Telescopes.Peer reviewe
- β¦