133 research outputs found

    BUDDI-MaNGA III: The mass-assembly histories of bulges and discs of spiral galaxies

    Full text link
    The many unique properties of galaxies are shaped by physical processes that affect different components of the galaxy - like the bulges and discs - in different ways, and leave characteristic imprints on the light and spectra of these components. Disentangling their spectra can reveal vital clues that can be traced back in time to understand how galaxies, and their components, form and evolve throughout their lifetimes. With BUDDI, we have decomposed the IFU datacubes in SDSS-MaNGA DR17 into a S\'ersic bulge component and an exponential disc component and extracted their clean bulge and disc spectra. BUDDI-MaNGA is the first and largest statistical sample of such decomposed spectra of 1452 galaxies covering morphologies from ellipticals to late-type spirals. We derived stellar masses of the individual components with SED fitting using BAGPIPES and estimated their mean mass-weighted stellar metallicities and stellar ages using pPXF. With this information in place, we reconstructed the mass assembly histories of the bulges and discs of the 968 spiral galaxies (Sa-Sm Types) in this sample to look for systematic trends with respect to stellar mass and morphology. Our results show a clear downsizing effect especially in the bulges, with more massive components assembling earlier and faster than the less massive ones. Additionally, on comparing the stellar populations of the bulges and discs in these galaxies, we find that a majority of the bulges host more metal-rich and older stars than their disc counterparts. Nevertheless, we also find that there exists a non-negligible fraction of the spiral galaxy population in our sample with bulges that are younger and more metal-rich than their discs. We interpret these results, taking into account how their formation histories and current stellar populations depend on stellar mass and morphology.Comment: 30 pages, 17 figures, accepted for publication in A&A; typos correcte

    Infant nutrition and allergy

    Get PDF
    The correct nutrition in the first year of a child’s life is an important factor determining the physical and intellectual capabilities of a person at a later age and has an important meaning to the risk of developing a food allergy. The aim of our study was to determine whether breastfeeding practices, including exceptional breastfeeding, and using hydrolysed milk alter the risk of developing a food allergy in infants. Material and Methods: We tracked 180 healthy infants up to the age of one year old and 94 – with manifestations of allergy. The statistical processing and visualisation of the results were done with the products Statgraphics Plus and Microsoft Excel. Results: The success of breastfeeding in the monitored mothers in terms of duration of breastfeeding was influenced by the level of education, ethnicity and current place of residence. In normal birth and caesarean delivery, healthy children are breastfed over 7 months of age, while children with manifestations of allergy – up to 1-2 months of age. Among the monitored by us children food allergy was seen more frequently in infants with low birth weight.Β  More commonly during the first year we observed skin-gastrointestinal form toward cow’s milk proteins. Among the observed children with allergic manifestation we found elevated levels of immunoglobin E(36,5IU/ml), eosinophiles – over 7%, anaemic syndrome – 40,5%. About 93% of children with initial manifestations of allergy were fed milk for infants, 4,3% were on mixed feeding (breast milk and supplementation with infant milk), 2,1 - on exceptional breastfeeding. Conclusion: The frequent clinical manifestation of allergic colitis and confirmation of allergy to cow's milk with immunoglobulin E and eosinophils require the introduction of an elimination diet and prolonged feeding with protein hydrolysate 6-12 months

    Spatially Extended Low Ionization Emission Regions (LIERs) at z∼0.9z\sim0.9

    Full text link
    We present spatially resolved emission diagnostics for eight z∼0.9z\sim0.9 galaxies that demonstrate extended low ionization emission-line regions (LIERs) over kpc scales. Eight candidates are selected based on their spatial extent and emission line fluxes from slitless spectroscopic observations with the HST/WFC3 G141 and G800L grisms in the well-studied GOODS survey fields. Five of the candidates (62.5%) are matched to X-ray counterparts in the \textit{Chandra X-Ray Observatory} Deep Fields. We modify the traditional Baldwin-Philips-Terlevich (BPT) emission line diagnostic diagram to use [SII]/(Hα\alpha+[NII]) instead of [NII]/Hα\alpha to overcome the blending of [NII] and Hα\alpha+[NII] in the low resolution slitless grism spectra. We construct emission line ratio maps and place the individual pixels in the modified BPT. The extended LINER-like emission present in all of our candidates, coupled with X-Ray properties consistent with star-forming galaxies and weak [OIII]λ\lambda5007\AA\ detections, is inconsistent with purely nuclear sources (LINERs) driven by active galactic nuclei. While recent ground-based integral field unit spectroscopic surveys have revealed significant evidence for diffuse LINER-like emission in galaxies within the local universe (z∼0.04)(z\sim0.04), this work provides the first evidence for the non-AGN origin of LINER-like emission out to high redshifts.Comment: 11 pages, 1 table, 6 figures, accepted for publication in the Astrophysics Journal (ApJ

    HFF-DeepSpace photometric catalogs of the 12 Hubble frontier fields, clusters, and parallels : photometry, photometric redshifts, and stellar masses

    Get PDF
    We present Hubble multi-wavelength photometric catalogs, including (up to) 17 filters with the Advanced Camera for Surveys and Wide Field Camera 3 from the ultra-violet to near-infrared for the Hubble Frontier Fields and associated parallels. We have constructed homogeneous photometric catalogs for all six clusters and their parallels. To further expand these data catalogs, we have added ultra-deep KS-band imaging at 2.2. mu m from the Very Large Telescope HAWK-I and Keck-I MOSFIRE instruments. We also add post-cryogenic Spitzer imaging at 3.6 and 4.5. mu m with the Infrared Array Camera (IRAC), as well as archival IRAC 5.8 and 8.0. mu m imaging when available. We introduce the public release of the multi-wavelength (0.2-8 mu m) photometric catalogs, and we describe the unique steps applied for the construction of these catalogs. Particular emphasis is given to the source detection band, the contamination of light from the bright cluster galaxies (bCGs), and intra-cluster light (ICL). In addition to the photometric catalogs, we provide catalogs of photometric redshifts and stellar population properties. Furthermore, this includes all the images used in the construction of the catalogs, including the combined models of bCGs and ICL, the residual images, segmentation maps, and more. These catalogs are a robust data set of the Hubble Frontier Fields and will be an important aid in designing future surveys, as well as planning follow-up programs with current and future observatories to answer key questions remaining about first light, reionization, the assembly of galaxies, and many more topics, most notably by identifying high-redshift sources to target

    Relationships between Haematological Parameters, Biochemical Markers of Iron Metabolism, and Trace Elements in Paediatric Patients under 3 Years with Iron Deficiency Anaemia

    Get PDF
    Π”Π΅Ρ„Ρ–Ρ†ΠΈΡ‚ Π·Π°Π»Ρ–Π·Π° Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ” дисбаланс Ρ–Π½ΡˆΠΈΡ… ΠΌΡ–ΠΊΡ€ΠΎ- Ρ– ΠΌΠ°ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π², Ρ‰ΠΎ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½Ρ ΠΎΠ±ΠΌΡ–Π½Ρƒ Π±Ρ–Π»ΡŒΡˆΠΎΡΡ‚Ρ– ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΈΡ… ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΈΡ… симптомів. Взаємодія Ρ– корСляція ΠΌΡ–ΠΆ ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Ρ‚Π° Π³Π΅ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ досі Π½Π΅ ясна. ΠœΠ΅Ρ‚Π°. Π’ΠΈΠ²Ρ‡ΠΈΡ‚ΠΈ Π²Π·Π°Ρ”ΠΌΠΎΠ·Π²'язки ΠΌΡ–ΠΆ Π³Π΅ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ, Π±Ρ–ΠΎΡ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΌΠΈ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌΡƒ Π·Π°Π»Ρ–Π·Π° Ρ– ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Ρƒ Π΄Ρ–Ρ‚Π΅ΠΉ Π²Ρ–ΠΊΠΎΠΌ Π΄ΠΎ 3 Ρ€ΠΎΠΊΡ–Π² Ρ–Π· Π·Π°Π»Ρ–Π·ΠΎΠ΄Π΅Ρ„Ρ–Ρ†ΠΈΡ‚Π½ΠΎΡŽ Π°Π½Π΅ΠΌΡ–Ρ”ΡŽ (ЗДА). ΠœΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ. ДослідТСння Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΎ 86 ΠΏΠ°Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π² Π²Ρ–Π΄ 0 Π΄ΠΎ 3 Ρ€ΠΎΠΊΡ–Π² Π· ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΈΠΌΠΈ Ρ– Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΈΠΌΠΈ ΠΎΠ·Π½Π°ΠΊΠ°ΠΌΠΈ ЗДА. 38 Π΄Ρ–Ρ‚Π΅ΠΉ Π±ΡƒΠ»ΠΈ Π· ΡƒΠ½Ρ–Π²Π΅Ρ€ΡΠΈΡ‚Π΅Ρ‚ΡΡŒΠΊΠΎΡ— Π»Ρ–ΠΊΠ°Ρ€Π½Ρ– ΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΎΠ³ΠΎ унівСрситСту ΠΌ.ПлСвСн, Болгарія - Π†-ша Π³Ρ€ΡƒΠΏΠ°, Ρ– 48 Π±ΡƒΠ»ΠΈ ΠΏΠ°Ρ†Ρ–Ρ”Π½Ρ‚Π°ΠΌΠΈ Π‘ΡƒΠΌΡΡŒΠΊΠΎΡ— обласної дитячої ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΎΡ— Π»Ρ–ΠΊΠ°Ρ€Π½Ρ–, ΠΌ.Π‘ΡƒΠΌΠΈ, Π£ΠΊΡ€Π°Ρ—Π½Π° - Π³Ρ€ΡƒΠΏΠ° II. Π“Ρ€ΡƒΠΏΠ° порівняння Π²ΠΊΠ»ΡŽΡ‡Π°Π»Π° 25 Π·Π΄ΠΎΡ€ΠΎΠ²ΠΈΡ… Π΄Ρ–Ρ‚Π΅ΠΉ Ρ‚ΠΎΠ³ΠΎ ΠΆ Π²Ρ–ΠΊΡƒ. Π“Π΅ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Ρ– Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚Π°Ρ€Π½Ρ– індСкси визначалися Π½Π° Π°Π½Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€Ρ– MICROS - 18 (ABX). Π‘ΠΈΡ€ΠΎΠ²Π°Ρ‚ΠΊΠΎΠ²ΠΈΠΉ Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΠΏΠΎΠ΅Ρ‚ΠΈΠ½ (ΡΠ•ΠŸΠž) Ρ– Ρ„Π΅Ρ€ΠΈΡ‚ΠΈΠ½ (sFR) Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ Ρ–ΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΈΠΌ Π°Π½Π°Π»Ρ–Π·ΠΎΠΌ. Π‘ΠΈΡ€ΠΎΠ²Π°Ρ‚ΠΊΠΎΠ²ΠΈΠΉ вміст ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ спСктрофотомСтрично (I Π³Ρ€ΡƒΠΏΠ°) Π°Π±ΠΎ Π·Π° допомогою Π°Ρ‚ΠΎΠΌΠ½ΠΎ- абсорбційної спСктрофотомСтрії (II Π³Ρ€ΡƒΠΏΠ°). Для ΠΎΡ†Ρ–Π½ΠΊΠΈ Π²Π·Π°Ρ”ΠΌΠΎΠ·Π²'язку ΠΌΡ–ΠΆ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌΡƒ Π·Π°Π»Ρ–Π·Π° Ρ‚Π° Π³Π΅ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ використовували ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚ корСляції Π‘ΠΏΡ–Ρ€ΠΌΠ΅Π½Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ ЗДА ΠΎΠ±ΡƒΠΌΠΎΠ²Π»Π΅Π½ΠΈΠΉ Π½Π΅ лишС ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½ΡΠΌ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌΡƒ Π·Π°Π»Ρ–Π·Π°, Π°Π»Π΅ ΠΉ Ρ–Π½ΡˆΠΈΡ… ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π², які прямо Ρ‡ΠΈ опосСрСдковано ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π²ΠΏΠ»ΠΈΠ²Π°Ρ‚ΠΈ як ΠΎΠ±ΠΌΡ–Π½ Π·Π°Π»Ρ–Π·Π°, Ρ‚Π°ΠΊ Ρ– Π½Π° Ρ€Π΅Π³ΡƒΠ»ΡΡ†Ρ–ΡŽ Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΠΏΠΎΠ΅Π·Ρƒ Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†Ρ–ΡŽ Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΠΏΠΎΠ΅Ρ‚ΠΈΠ½Ρƒ. Ми знайшли достовірну ΠΊΠΎΡ€Π΅Π»ΡΡ†Ρ–ΡŽ ΠΌΡ–ΠΆ Ρ€Ρ–Π²Π½Π΅ΠΌ Ρ…Ρ€ΠΎΠΌΡƒ Ρ– насичСнням трансфСрину (r = -0,382, Ρ€ = 0,018), Ρ†ΠΈΠ½ΠΊΡƒ Ρ– сEПO (r = 0,543, Ρ€ = 0,036), ΠΌΡ–Π΄Ρ– Ρ– sFR (r = -0,561, Ρ€ = 0,029), Ρ– cΠ•ΠŸΠž (r = -0,739, Ρ€ = 0,0016), ΠΊΠΎΠ±Π°Π»ΡŒΡ‚a Ρ– сEPO (r = 0,769, Ρ€ = 0,0021), Ρ‰ΠΎ Π²ΠΊΠ°Π·ΡƒΡ” Π½Π° Ρ€ΠΎΠ»ΡŒ ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π² ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Ρ– ЗДА. Π’Π°ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ, якщо Π·Π²ΠΈΡ‡Π°ΠΉΠ½Π° тСрапія ЗДА Ρ” Π½Π΅Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡŽ, Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎ Π²ΠΈΠΊΠ»ΡŽΡ‡Π°Ρ‚ΠΈ супутнє ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½Ρ ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ балансу Π· ΠΎΡ†Ρ–Π½ΠΊΠΎΡŽ рівня ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π², Π° Π·Π° нСобхідності ΠΏΠΎΠ²ΠΈΠ½Π½Π° проводитися корСкція. ΠŸΡ€ΠΈ Ρ†ΠΈΡ‚ΡƒΠ²Π°Π½Π½Ρ– Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°, використовуйтС посилання http://essuir.sumdu.edu.ua/handle/123456789/36824Π”Π΅Ρ„ΠΈΡ†ΠΈΡ‚ ΠΆΠ΅Π»Π΅Π·Π° Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ дисбаланс Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΌΠΈΠΊΡ€ΠΎ- ΠΈ макроэлСмСнтов, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ ΠΎΠ±ΠΌΠ΅Π½Π° Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° микроэлСмСнтов ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… клиничСских симптомов. ВзаимодСйствиС ΠΈ коррСляция ΠΌΠ΅ΠΆΠ΄Ρƒ микроэлСмСнтами ΠΈ гСматологичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π΄ΠΎ сих ΠΏΠΎΡ€ Π½Π΅ ясна. ЦСль. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ гСматологичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ, биохимичСскими ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π° ΠΈ микроэлСмСнтами Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ Π² возрастС Π΄ΠΎ 3 Π»Π΅Ρ‚ с ΠΆΠ΅Π»Π΅Π·ΠΎΠ΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π½ΠΎΠΉ Π°Π½Π΅ΠΌΠΈΠ΅ΠΉ (ЖДА). ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИсслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΎ 86 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΎΡ‚ 0 Π΄ΠΎ 3 Π»Π΅Ρ‚ с клиничСскими ΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ ЖДА. 38 Π΄Π΅Ρ‚Π΅ΠΉ Π±Ρ‹Π»ΠΈ ΠΈΠ· унивСрситСтской Π±ΠΎΠ»ΡŒΠ½ΠΈΡ†Ρ‹ мСдицинского унивСрситСта Π³.ПлСвСн, Болгария - Π†-я Π³Ρ€ΡƒΠΏΠΏΠ°, ΠΈ 48 Π±Ρ‹Π»ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌΠΈ Бумской областной дСтской клиничСской Π±ΠΎΠ»ΡŒΠ½ΠΈΡ†Ρ‹, Π³.Π‘ΡƒΠΌΡ‹, Π£ΠΊΡ€Π°ΠΈΠ½Π° - Π³Ρ€ΡƒΠΏΠΏΠ° II. Π“Ρ€ΡƒΠΏΠΏΠ° сравнСния Π²ΠΊΠ»ΡŽΡ‡Π°Π»Π° 25 Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄Π΅Ρ‚Π΅ΠΉ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ возраста. ГСматологичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΈ эритроцитарныС индСксы ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»ΠΈΡΡŒ Π½Π° Π°Π½Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π΅ MICROS - 18 (ABX). Π‘Ρ‹Π²ΠΎΡ€ΠΎΡ‡Π½Ρ‹ΠΉ эритропоэтин (сЭПО) ΠΈ Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΈΠ½ (sFR) ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»ΠΈΡΡŒ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½Ρ‹ΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ. Π‘Ρ‹Π²ΠΎΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠ΅ содСрТаниС микроэлСмСнтов опрСдСляли спСктрофотомСтричСски (I Π³Ρ€ΡƒΠΏΠΏΠ°) ΠΈΠ»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°Ρ‚ΠΎΠΌΠ½ΠΎ- абсорбционной спСктрофотомСтрии (II Π³Ρ€ΡƒΠΏΠΏΠ°). Для ΠΎΡ†Π΅Π½ΠΊΠΈ взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π° ΠΈ гСматологичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ использовали коэффициСнт коррСляции Π‘ΠΏΠΈΡ€ΠΌΠ΅Π½Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ЖДА обусловлСно Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π°, Π½ΠΎ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… микроэлСмСнтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ прямо ΠΈΠ»ΠΈ косвСнно ΠΌΠΎΠ³ΡƒΡ‚ Π²Π»ΠΈΡΡ‚ΡŒ ΠΊΠ°ΠΊ ΠΎΠ±ΠΌΠ΅Π½ ΠΆΠ΅Π»Π΅Π·Π°, Ρ‚Π°ΠΊ ΠΈ Π½Π° Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΡŽ эритропоэза Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΡŽ эритропоэтина. ΠœΡ‹ нашли Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ ΠΊΠΎΡ€Ρ€Π΅Π»ΡΡ†ΠΈΡŽ ΠΌΠ΅ΠΆΠ΄Ρƒ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ Ρ…Ρ€ΠΎΠΌΠ° ΠΈ насыщСниСм трансфСррина (r = -0,382, Ρ€ = 0,018), Ρ†ΠΈΠ½ΠΊΠ° - ΠΈ сЭПO (r = 0,543, Ρ€ = 0,036), ΠΌΠ΅Π΄ΠΈ ΠΈ sFR (r = -0,561, Ρ€ = 0,029), ΠΈ cЭПО (r= -0,739, Ρ€ = 0,0016), ΠΊΠΎΠ±Π°Π»ΡŒΡ‚a ΠΈ сЭПO (r = 0,769, Ρ€ = 0,0021), Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ€ΠΎΠ»ΡŒ микроэлСмСнтов Π² ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅ ЖДА. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ссли обычная тСрапия ЖДА являСтся нСэффСктивной, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡŒ ΡΠΎΠΏΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ микроэлСмСнтного балланса с ΠΎΡ†Π΅Π½ΠΊΠΎΠΉ уровня микроэлСмСнтов, Π° ΠΏΡ€ΠΈ нСобходимости Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ коррСкция. ΠŸΡ€ΠΈ Ρ†ΠΈΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ ссылку http://essuir.sumdu.edu.ua/handle/123456789/36824Iron deficiency causes disbalance of other micro- and macroelements that leads to disruption of the exchange of most micronutrients and development of characteristic clinical symptoms. Interaction and correlation between trace elements and haematological parameters is still not clear. Aim. To investigate the relationship between haematological parameters, biochemical markers of iron metabolism and trace elements in children under 3 years with Iron-deficiency anaemia (IDA). Materials and Methods. Investigation comprises 86 patients from 0 to 3 years of age with clinical and laboratory signs of IDA. 38 children-patients are of the University Hospital, Medical University – Pleven, Bulgaria – I group, and 48 are patients of the Sumy Regional Child’s Clinical Hospital, Sumy, Ukraine – II group. Comparison group includes 25 healthy children at the same age. Haematological parameters and the red cell indices were examined by analyzer MICROS – 18 (ABX). The serum erythropoietin (sEPO) and ferritin (sFR) levels were determined by ELISA. Serum content of trace elements was determined spectrophotometrically (I group) or by atomic absorption spectrophotometry (II group). To evaluate a relationship between markers of iron metabolism and haematological parameters we have used Spearman's correlation coefficients. Results. Formation of IDA is caused not only by violation of iron metabolism, but also other trace elements that directly or indirectly may affect both iron exchange and erythropoiesis regulation through the erythropoietin production. We found significant correlations between the level of chromium and transferrin saturation (r = -0.382, p = 0.018), zinc – with sEPO (r = 0.543, p = 0.036), copper – with sFR (r = -0.561, p = 0.029), and sEPO (r = -0.739, p = 0.0016), and cobalt – with sEPO (r = 0.769, p = 0.0021), that indicate the role of trace elements in the pathogenesis of IDA. Thus, if the routine therapy of IDA is ineffective, a concomitant micronutrient disorder should be considered, with an evaluation of trace elements level, and, if necessary, a correction should be carried out. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3682

    The MUSE Ultra Deep Field (MUDF). V. Characterizing the Mass-Metallicity Relation for Low Mass Galaxies at z∼1z\sim 1-22

    Full text link
    Using more than 100 galaxies in the MUSE Ultra Deep Field with spectroscopy from the Hubble Space Telescope's Wide Field Camera 3 and the Very Large Telescope's Multi Unit Spectroscopic Explorer, we extend the gas-phase mass-metallicity relation (MZR) at zβ‰ˆβ€‰z\approx\,1 \,- \,2 down to stellar masses of M⋆_{\star} β‰ˆ\approx 107.5^{7.5} MβŠ™_{\odot}. The sample reaches six times lower in stellar mass and star formation rate (SFR) than previous HST studies at these redshifts, and we find that galaxy metallicities decrease to log(O/H) + 12 β‰ˆ\approx 7.8 Β±\pm 0.1 (15% solar) at log(M⋆_{\star}/MβŠ™_{\odot}) β‰ˆ\approx 7.5, without evidence of a turnover in the shape of the MZR at low masses. We validate our strong-line metallicities using the direct method for sources with [O III] Ξ»\lambda4363 and [O III] Ξ»\lambda1666 detections, and find excellent agreement between the techniques. The [O III] Ξ»\lambda1666-based metallicities double existing measurements with S/N β‰₯\geq 5 for unlensed sources at zΒ >z~> 1, validating the strong-line calibrations up to z∼z \sim2.5. We confirm that the MZR resides ∼\sim0.3 dex lower in metallicity than local galaxies and is consistent with the fundamental metallicity relation (FMR) if the low mass slope varies with SFR. At lower redshifts (z∼z\sim0.5) our sample reaches ∼\sim0.5 dex lower in SFR than current calibrations and we find enhanced metallicities that are consistent with extrapolating the MZR to lower SFRs. Finally, we detect only a ∼\sim0.1 dex difference in the metallicities of galaxies in groups versus isolated environments. These results are based on robust calibrations and reach the lowest masses and SFRs that are accessible with HST, providing a critical foundation for studies with the Webb and Roman Space Telescopes.Comment: Accepted for publication in ApJ on March 23, 2024. The paper has 29 pages, 12 figures, and 6 tables. The calibrated data are available through MAST at: https://archive.stsci.edu/hlsp/mud

    Stellar Half-Mass Radii of 0.5<z<2.30.5<z<2.3 Galaxies: Comparison with JWST/NIRCam Half-Light Radii

    Full text link
    We use CEERS JWST/NIRCam imaging to measure rest-frame near-IR light profiles of >>500 M⋆>1010Β MβŠ™M_\star>10^{10}~M_\odot galaxies in the redshift range 0.5<z<2.30.5<z<2.3. We compare the resulting rest-frame 1.5-2ΞΌ\mum half-light radii (RNIRR_{\rm{NIR}}) with stellar half-mass radii (\rmass) derived with multi-color light profiles from CANDELS HST imaging. In general agreement with previous work, we find that RNIRR_{\rm{NIR}} and \rmass~are up to 40\%~smaller than the rest-frame optical half-light radius RoptR_{\rm{opt}}. The agreement between RNIRR_{\rm{NIR}} and \rmass~is excellent, with negligible systematic offset (<<0.03 dex) up to z=2z=2 for quiescent galaxies and up to z=1.5z=1.5 for star-forming galaxies. We also deproject the profiles to estimate \rmassd, the radius of a sphere containing 50\% of the stellar mass. We present the Rβˆ’M⋆R-M_\star distribution of galaxies at 0.5<z<1.50.5<z<1.5, comparing RoptR_{\rm{opt}}, \rmass~and \rmassd. The slope is significantly flatter for \rmass~and \rmassd~ compared to RoptR_{\rm{opt}}, mostly due to downward shifts in size for massive star-forming galaxies, while \rmass~and \rmassd~do not show markedly different trends. Finally, we show rapid size evolution (R∝(1+z)βˆ’1.7Β±0.1R\propto (1+z)^{-1.7\pm0.1}) for massive (M⋆>1011Β MβŠ™M_\star>10^{11}~M_\odot) quiescent galaxies between z=0.5z=0.5 and z=2.3z=2.3, again comparing RoptR_{\rm{opt}}, \rmass~and \rmassd. We conclude that the main tenets of the size evolution narrative established over the past 20 years, based on rest-frame optical light profile analysis, still hold in the era of JWST/NIRCam observations in the rest-frame near-IR.Comment: Submitted to ApJ. Comments welcom

    Relationships between Haematological Parameters, Biochemical Markers of Iron Metabolism, and Trace Elements in Paediatric Patients under 3 Years with Iron Deficiency Anaemia

    Get PDF
    Π”Π΅Ρ„Ρ–Ρ†ΠΈΡ‚ Π·Π°Π»Ρ–Π·Π° Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ” дисбаланс Ρ–Π½ΡˆΠΈΡ… ΠΌΡ–ΠΊΡ€ΠΎ- Ρ– ΠΌΠ°ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π², Ρ‰ΠΎ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½Ρ ΠΎΠ±ΠΌΡ–Π½Ρƒ Π±Ρ–Π»ΡŒΡˆΠΎΡΡ‚Ρ– ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Ρ– Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΈΡ… ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΈΡ… симптомів. Взаємодія Ρ– корСляція ΠΌΡ–ΠΆ ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Ρ‚Π° Π³Π΅ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ досі Π½Π΅ ясна. ΠœΠ΅Ρ‚Π°. Π’ΠΈΠ²Ρ‡ΠΈΡ‚ΠΈ Π²Π·Π°Ρ”ΠΌΠΎΠ·Π²'язки ΠΌΡ–ΠΆ Π³Π΅ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ, Π±Ρ–ΠΎΡ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΌΠΈ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌΡƒ Π·Π°Π»Ρ–Π·Π° Ρ– ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Ρƒ Π΄Ρ–Ρ‚Π΅ΠΉ Π²Ρ–ΠΊΠΎΠΌ Π΄ΠΎ 3 Ρ€ΠΎΠΊΡ–Π² Ρ–Π· Π·Π°Π»Ρ–Π·ΠΎΠ΄Π΅Ρ„Ρ–Ρ†ΠΈΡ‚Π½ΠΎΡŽ Π°Π½Π΅ΠΌΡ–Ρ”ΡŽ (ЗДА). ΠœΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ. ДослідТСння Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΎ 86 ΠΏΠ°Ρ†Ρ–Ρ”Π½Ρ‚Ρ–Π² Π²Ρ–Π΄ 0 Π΄ΠΎ 3 Ρ€ΠΎΠΊΡ–Π² Π· ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΈΠΌΠΈ Ρ– Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΈΠΌΠΈ ΠΎΠ·Π½Π°ΠΊΠ°ΠΌΠΈ ЗДА. 38 Π΄Ρ–Ρ‚Π΅ΠΉ Π±ΡƒΠ»ΠΈ Π· ΡƒΠ½Ρ–Π²Π΅Ρ€ΡΠΈΡ‚Π΅Ρ‚ΡΡŒΠΊΠΎΡ— Π»Ρ–ΠΊΠ°Ρ€Π½Ρ– ΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΎΠ³ΠΎ унівСрситСту ΠΌ.ПлСвСн, Болгарія - Π†-ша Π³Ρ€ΡƒΠΏΠ°, Ρ– 48 Π±ΡƒΠ»ΠΈ ΠΏΠ°Ρ†Ρ–Ρ”Π½Ρ‚Π°ΠΌΠΈ Π‘ΡƒΠΌΡΡŒΠΊΠΎΡ— обласної дитячої ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΎΡ— Π»Ρ–ΠΊΠ°Ρ€Π½Ρ–, ΠΌ.Π‘ΡƒΠΌΠΈ, Π£ΠΊΡ€Π°Ρ—Π½Π° - Π³Ρ€ΡƒΠΏΠ° II. Π“Ρ€ΡƒΠΏΠ° порівняння Π²ΠΊΠ»ΡŽΡ‡Π°Π»Π° 25 Π·Π΄ΠΎΡ€ΠΎΠ²ΠΈΡ… Π΄Ρ–Ρ‚Π΅ΠΉ Ρ‚ΠΎΠ³ΠΎ ΠΆ Π²Ρ–ΠΊΡƒ. Π“Π΅ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Ρ– Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚Π°Ρ€Π½Ρ– індСкси визначалися Π½Π° Π°Π½Π°Π»Ρ–Π·Π°Ρ‚ΠΎΡ€Ρ– MICROS - 18 (ABX). Π‘ΠΈΡ€ΠΎΠ²Π°Ρ‚ΠΊΠΎΠ²ΠΈΠΉ Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΠΏΠΎΠ΅Ρ‚ΠΈΠ½ (ΡΠ•ΠŸΠž) Ρ– Ρ„Π΅Ρ€ΠΈΡ‚ΠΈΠ½ (sFR) Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ Ρ–ΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΈΠΌ Π°Π½Π°Π»Ρ–Π·ΠΎΠΌ. Π‘ΠΈΡ€ΠΎΠ²Π°Ρ‚ΠΊΠΎΠ²ΠΈΠΉ вміст ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ спСктрофотомСтрично (I Π³Ρ€ΡƒΠΏΠ°) Π°Π±ΠΎ Π·Π° допомогою Π°Ρ‚ΠΎΠΌΠ½ΠΎ- абсорбційної спСктрофотомСтрії (II Π³Ρ€ΡƒΠΏΠ°). Для ΠΎΡ†Ρ–Π½ΠΊΠΈ Π²Π·Π°Ρ”ΠΌΠΎΠ·Π²'язку ΠΌΡ–ΠΆ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌΡƒ Π·Π°Π»Ρ–Π·Π° Ρ‚Π° Π³Π΅ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ використовували ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚ корСляції Π‘ΠΏΡ–Ρ€ΠΌΠ΅Π½Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ ЗДА ΠΎΠ±ΡƒΠΌΠΎΠ²Π»Π΅Π½ΠΈΠΉ Π½Π΅ лишС ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½ΡΠΌ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Π·ΠΌΡƒ Π·Π°Π»Ρ–Π·Π°, Π°Π»Π΅ ΠΉ Ρ–Π½ΡˆΠΈΡ… ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π², які прямо Ρ‡ΠΈ опосСрСдковано ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π²ΠΏΠ»ΠΈΠ²Π°Ρ‚ΠΈ як ΠΎΠ±ΠΌΡ–Π½ Π·Π°Π»Ρ–Π·Π°, Ρ‚Π°ΠΊ Ρ– Π½Π° Ρ€Π΅Π³ΡƒΠ»ΡΡ†Ρ–ΡŽ Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΠΏΠΎΠ΅Π·Ρƒ Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†Ρ–ΡŽ Π΅Ρ€ΠΈΡ‚Ρ€ΠΎΠΏΠΎΠ΅Ρ‚ΠΈΠ½Ρƒ. Ми знайшли достовірну ΠΊΠΎΡ€Π΅Π»ΡΡ†Ρ–ΡŽ ΠΌΡ–ΠΆ Ρ€Ρ–Π²Π½Π΅ΠΌ Ρ…Ρ€ΠΎΠΌΡƒ Ρ– насичСнням трансфСрину (r = -0,382, Ρ€ = 0,018), Ρ†ΠΈΠ½ΠΊΡƒ Ρ– сEПO (r = 0,543, Ρ€ = 0,036), ΠΌΡ–Π΄Ρ– Ρ– sFR (r = -0,561, Ρ€ = 0,029), Ρ– cΠ•ΠŸΠž (r = -0,739, Ρ€ = 0,0016), ΠΊΠΎΠ±Π°Π»ΡŒΡ‚a Ρ– сEPO (r = 0,769, Ρ€ = 0,0021), Ρ‰ΠΎ Π²ΠΊΠ°Π·ΡƒΡ” Π½Π° Ρ€ΠΎΠ»ΡŒ ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² Π² ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Ρ– ЗДА. Π’Π°ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ, якщо Π·Π²ΠΈΡ‡Π°ΠΉΠ½Π° тСрапія ЗДА Ρ” Π½Π΅Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡŽ, Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΎ Π²ΠΈΠΊΠ»ΡŽΡ‡Π°Ρ‚ΠΈ супутнє ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½Ρ ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ балансу Π· ΠΎΡ†Ρ–Π½ΠΊΠΎΡŽ рівня ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π², Π° Π·Π° нСобхідності ΠΏΠΎΠ²ΠΈΠ½Π½Π° проводитися корСкція. ΠŸΡ€ΠΈ Ρ†ΠΈΡ‚ΡƒΠ²Π°Π½Π½Ρ– Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°, використовуйтС посилання http://essuir.sumdu.edu.ua/handle/123456789/36824Π”Π΅Ρ„ΠΈΡ†ΠΈΡ‚ ΠΆΠ΅Π»Π΅Π·Π° Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ дисбаланс Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΌΠΈΠΊΡ€ΠΎ- ΠΈ макроэлСмСнтов, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ ΠΎΠ±ΠΌΠ΅Π½Π° Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° микроэлСмСнтов ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… клиничСских симптомов. ВзаимодСйствиС ΠΈ коррСляция ΠΌΠ΅ΠΆΠ΄Ρƒ микроэлСмСнтами ΠΈ гСматологичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π΄ΠΎ сих ΠΏΠΎΡ€ Π½Π΅ ясна. ЦСль. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ гСматологичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ, биохимичСскими ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π° ΠΈ микроэлСмСнтами Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ Π² возрастС Π΄ΠΎ 3 Π»Π΅Ρ‚ с ΠΆΠ΅Π»Π΅Π·ΠΎΠ΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π½ΠΎΠΉ Π°Π½Π΅ΠΌΠΈΠ΅ΠΉ (ЖДА). ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИсслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΎ 86 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΎΡ‚ 0 Π΄ΠΎ 3 Π»Π΅Ρ‚ с клиничСскими ΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ ЖДА. 38 Π΄Π΅Ρ‚Π΅ΠΉ Π±Ρ‹Π»ΠΈ ΠΈΠ· унивСрситСтской Π±ΠΎΠ»ΡŒΠ½ΠΈΡ†Ρ‹ мСдицинского унивСрситСта Π³.ПлСвСн, Болгария - Π†-я Π³Ρ€ΡƒΠΏΠΏΠ°, ΠΈ 48 Π±Ρ‹Π»ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌΠΈ Бумской областной дСтской клиничСской Π±ΠΎΠ»ΡŒΠ½ΠΈΡ†Ρ‹, Π³.Π‘ΡƒΠΌΡ‹, Π£ΠΊΡ€Π°ΠΈΠ½Π° - Π³Ρ€ΡƒΠΏΠΏΠ° II. Π“Ρ€ΡƒΠΏΠΏΠ° сравнСния Π²ΠΊΠ»ΡŽΡ‡Π°Π»Π° 25 Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄Π΅Ρ‚Π΅ΠΉ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ возраста. ГСматологичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΈ эритроцитарныС индСксы ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»ΠΈΡΡŒ Π½Π° Π°Π½Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π΅ MICROS - 18 (ABX). Π‘Ρ‹Π²ΠΎΡ€ΠΎΡ‡Π½Ρ‹ΠΉ эритропоэтин (сЭПО) ΠΈ Ρ„Π΅Ρ€Ρ€ΠΈΡ‚ΠΈΠ½ (sFR) ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»ΠΈΡΡŒ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½Ρ‹ΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ. Π‘Ρ‹Π²ΠΎΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠ΅ содСрТаниС микроэлСмСнтов опрСдСляли спСктрофотомСтричСски (I Π³Ρ€ΡƒΠΏΠΏΠ°) ΠΈΠ»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°Ρ‚ΠΎΠΌΠ½ΠΎ- абсорбционной спСктрофотомСтрии (II Π³Ρ€ΡƒΠΏΠΏΠ°). Для ΠΎΡ†Π΅Π½ΠΊΠΈ взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π°ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π° ΠΈ гСматологичСскими ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ использовали коэффициСнт коррСляции Π‘ΠΏΠΈΡ€ΠΌΠ΅Π½Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ЖДА обусловлСно Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΆΠ΅Π»Π΅Π·Π°, Π½ΠΎ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… микроэлСмСнтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ прямо ΠΈΠ»ΠΈ косвСнно ΠΌΠΎΠ³ΡƒΡ‚ Π²Π»ΠΈΡΡ‚ΡŒ ΠΊΠ°ΠΊ ΠΎΠ±ΠΌΠ΅Π½ ΠΆΠ΅Π»Π΅Π·Π°, Ρ‚Π°ΠΊ ΠΈ Π½Π° Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΡŽ эритропоэза Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΡŽ эритропоэтина. ΠœΡ‹ нашли Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ ΠΊΠΎΡ€Ρ€Π΅Π»ΡΡ†ΠΈΡŽ ΠΌΠ΅ΠΆΠ΄Ρƒ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ Ρ…Ρ€ΠΎΠΌΠ° ΠΈ насыщСниСм трансфСррина (r = -0,382, Ρ€ = 0,018), Ρ†ΠΈΠ½ΠΊΠ° - ΠΈ сЭПO (r = 0,543, Ρ€ = 0,036), ΠΌΠ΅Π΄ΠΈ ΠΈ sFR (r = -0,561, Ρ€ = 0,029), ΠΈ cЭПО (r= -0,739, Ρ€ = 0,0016), ΠΊΠΎΠ±Π°Π»ΡŒΡ‚a ΠΈ сЭПO (r = 0,769, Ρ€ = 0,0021), Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ€ΠΎΠ»ΡŒ микроэлСмСнтов Π² ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅ ЖДА. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ссли обычная тСрапия ЖДА являСтся нСэффСктивной, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡŒ ΡΠΎΠΏΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ микроэлСмСнтного балланса с ΠΎΡ†Π΅Π½ΠΊΠΎΠΉ уровня микроэлСмСнтов, Π° ΠΏΡ€ΠΈ нСобходимости Π΄ΠΎΠ»ΠΆΠ½Π° ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ коррСкция. ΠŸΡ€ΠΈ Ρ†ΠΈΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ ссылку http://essuir.sumdu.edu.ua/handle/123456789/36824Iron deficiency causes disbalance of other micro- and macroelements that leads to disruption of the exchange of most micronutrients and development of characteristic clinical symptoms. Interaction and correlation between trace elements and haematological parameters is still not clear. Aim. To investigate the relationship between haematological parameters, biochemical markers of iron metabolism and trace elements in children under 3 years with Iron-deficiency anaemia (IDA). Materials and Methods. Investigation comprises 86 patients from 0 to 3 years of age with clinical and laboratory signs of IDA. 38 children-patients are of the University Hospital, Medical University – Pleven, Bulgaria – I group, and 48 are patients of the Sumy Regional Child’s Clinical Hospital, Sumy, Ukraine – II group. Comparison group includes 25 healthy children at the same age. Haematological parameters and the red cell indices were examined by analyzer MICROS – 18 (ABX). The serum erythropoietin (sEPO) and ferritin (sFR) levels were determined by ELISA. Serum content of trace elements was determined spectrophotometrically (I group) or by atomic absorption spectrophotometry (II group). To evaluate a relationship between markers of iron metabolism and haematological parameters we have used Spearman's correlation coefficients. Results. Formation of IDA is caused not only by violation of iron metabolism, but also other trace elements that directly or indirectly may affect both iron exchange and erythropoiesis regulation through the erythropoietin production. We found significant correlations between the level of chromium and transferrin saturation (r = -0.382, p = 0.018), zinc – with sEPO (r = 0.543, p = 0.036), copper – with sFR (r = -0.561, p = 0.029), and sEPO (r = -0.739, p = 0.0016), and cobalt – with sEPO (r = 0.769, p = 0.0021), that indicate the role of trace elements in the pathogenesis of IDA. Thus, if the routine therapy of IDA is ineffective, a concomitant micronutrient disorder should be considered, with an evaluation of trace elements level, and, if necessary, a correction should be carried out. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3682

    The Ultraviolet Luminosity Function at 0.6 < z < 1 from UVCANDELS

    Get PDF
    Β© 2024. The Author(s). Published by the American Astronomical Society. This work is licensed under the terms of under the terms of the Creative Commons Attribution 4.0 licence: https://creativecommons.org/licenses/by/4.0/UVCANDELS is a Hubble Space Telescope Cycle-26 Treasury Program awarded 164 orbits of primary ultraviolet (UV) F275W imaging and coordinated parallel optical F435W imaging in four CANDELS fieldsβ€”GOODS-N, GOODS-S, EGS, and COSMOSβ€”covering a total area of ∼426 arcmin2. This is ∼2.7 times larger than the area covered by previous deep-field space UV data combined, reaching a depth of about 27 and 28 ABmag (5Οƒ in 0.”2 apertures) for F275W and F435W, respectively. Along with new photometric catalogs, we present an analysis of the rest-frame UV luminosity function (LF), relying on our UV-optimized aperture photometry method, yielding a factor of 1.5 increase over H-isophot aperture photometry in the signal-to-noise ratios of galaxies in our F275W imaging. Using well-tested photometric redshift measurements, we identify 5810 galaxies at redshifts 0.6 < z < 1, down to an absolute magnitude of M UV = βˆ’14.2. In order to minimize the effect of uncertainties in estimating the completeness function, especially at the faint end, we restrict our analysis to sources above 30% completeness, which provides a final sample of 4726 galaxies at βˆ’21.5 < M UV < βˆ’15.5. We performed a maximum likelihood estimate to derive the best-fit parameters of the UV LF. We report a best-fit faint-end slope of Ξ±=βˆ’1.359βˆ’0.041+0.041 at z ∼ 0.8. Creating subsamples at z ∼ 0.7 and z ∼ 0.9, we observe a possible evolution of Ξ± with redshift. The unobscured UV luminosity density at M UV < βˆ’10 is derived as ρUV=1.339βˆ’0.030+0.027(Γ—1026ergsβˆ’1Hzβˆ’1Mpcβˆ’3) using our best-fit LF parameters. The new F275W and F435 photometric catalogs from UVCANDELS have been made publicly available on the Barbara A. Mikulski Archive for Space Telescopes.Peer reviewe
    • …
    corecore